Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = GABARA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 11769 KB  
Article
CRBeDaSet: A Benchmark Dataset for High Accuracy Close Range 3D Object Reconstruction
by Grzegorz Gabara and Piotr Sawicki
Remote Sens. 2023, 15(4), 1116; https://doi.org/10.3390/rs15041116 - 18 Feb 2023
Cited by 9 | Viewed by 4651
Abstract
This paper presents the CRBeDaSet—a new benchmark dataset designed for evaluating close range, image-based 3D modeling and reconstruction techniques, and the first empirical experiences of its use. The test object is a medium-sized building. Diverse textures characterize the surface of elevations. The dataset [...] Read more.
This paper presents the CRBeDaSet—a new benchmark dataset designed for evaluating close range, image-based 3D modeling and reconstruction techniques, and the first empirical experiences of its use. The test object is a medium-sized building. Diverse textures characterize the surface of elevations. The dataset contains: the geodetic spatial control network (12 stabilized ground points determined using iterative multi-observation parametric adjustment) and the photogrammetric network (32 artificial signalized and 18 defined natural control points), measured using Leica TS30 total station and 36 terrestrial, mainly convergent photos, acquired from elevated camera standpoints with non-metric digital single-lens reflex Nikon D5100 camera (ground sample distance approx. 3 mm), the complex results of the bundle block adjustment with simultaneous camera calibration performed in the Pictran software package, and the colored point clouds (ca. 250 million points) from terrestrial laser scanning acquired using the Leica ScanStation C10 and post-processed in the Leica Cyclone™ SCAN software (ver. 2022.1.1) which were denoized, filtered, and classified using LoD3 standard (ca. 62 million points). The existing datasets and benchmarks were also described and evaluated in the paper. The proposed photogrammetric dataset was experimentally tested in the open-source application GRAPHOS and the commercial suites ContextCapture, Metashape, PhotoScan, Pix4Dmapper, and RealityCapture. As the first experience in its evaluation, the difficulties and errors that occurred in the software used during dataset digital processing were shown and discussed. The proposed CRBeDaSet benchmark dataset allows obtaining high accuracy (“mm” range) of the photogrammetric 3D object reconstruction in close range, based on a multi-image view uncalibrated imagery, dense image matching techniques, and generated dense point clouds. Full article
Show Figures

Figure 1

18 pages, 2006 KB  
Article
Efficacy and Safety of Tinzaparin in Prophylactic, Intermediate and Therapeutic Doses in Non-Critically Ill Patients Hospitalized with COVID-19: The PROTHROMCOVID Randomized Controlled Trial
by Nuria Muñoz-Rivas, Jesús Aibar, Cristina Gabara-Xancó, Ángela Trueba-Vicente, Ana Urbelz-Pérez, Vicente Gómez-Del Olmo, Pablo Demelo-Rodríguez, Alberto Rivera-Gallego, Pau Bosch-Nicolau, Montserrat Perez-Pinar, Mónica Rios-Prego, Olga Madridano-Cobo, Laura Ramos-Alonso, Jesús Alonso-Carrillo, Iria Francisco-Albelsa, Edelmira Martí-Saez, Ana Maestre-Peiró, Manuel Méndez-Bailón, José Ángel Hernández-Rivas and Juan Torres-Macho
J. Clin. Med. 2022, 11(19), 5632; https://doi.org/10.3390/jcm11195632 - 24 Sep 2022
Cited by 17 | Viewed by 4154
Abstract
Hospitalized patients with COVID-19 are at increased risk of thrombosis, acute respiratory distress syndrome and death. The optimal dosage of thromboprophylaxis is unknown. The aim was to evaluate the efficacy and safety of tinzaparin in prophylactic, intermediate, and therapeutic doses in non-critical patients [...] Read more.
Hospitalized patients with COVID-19 are at increased risk of thrombosis, acute respiratory distress syndrome and death. The optimal dosage of thromboprophylaxis is unknown. The aim was to evaluate the efficacy and safety of tinzaparin in prophylactic, intermediate, and therapeutic doses in non-critical patients admitted for COVID-19 pneumonia. PROTHROMCOVID is a randomized, unblinded, controlled, multicenter trial enrolling non-critical, hospitalized adult patients with COVID-19 pneumonia. Patients were randomized to prophylactic (4500 IU), intermediate (100 IU/kg), or therapeutic (175 IU/kg) groups. All tinzaparin doses were administered once daily during hospitalization, followed by 7 days of prophylactic tinzaparin at discharge. The primary efficacy outcome was a composite endpoint of symptomatic systemic thrombotic events, need for invasive or non-invasive mechanical ventilation, or death within 30 days. The main safety outcome was major bleeding at 30 days. Of the 311 subjects randomized, 300 were included in the prespecified interim analysis (mean [SD] age, 56.7 [14.6] years; males, 182 [60.7%]). The composite endpoint at 30 days from randomization occurred in 58 patients (19.3%) of the total population; 19 (17.1 %) in the prophylactic group, 20 (22.1%) in the intermediate group, and 19 (18.5%) in the therapeutic dose group (p = 0.72). No major bleeding event was reported; non-major bleeding was observed in 3.7% of patients, with no intergroup differences. Due to these results and the futility analysis, the trial was stopped. In non-critically ill COVID-19 patients, intermediate or full-dose tinzaparin compared to standard prophylactic doses did not appear to affect the risk of thrombotic event, non-invasive ventilation, or mechanical ventilation or death. Trial RegistrationClinicalTrials.gov Identifier (NCT04730856). Edura-CT registration number: 2020-004279-42. Full article
Show Figures

Figure 1

26 pages, 5826 KB  
Article
Multi-Variant Accuracy Evaluation of UAV Imaging Surveys: A Case Study on Investment Area
by Grzegorz Gabara and Piotr Sawicki
Sensors 2019, 19(23), 5229; https://doi.org/10.3390/s19235229 - 28 Nov 2019
Cited by 16 | Viewed by 4763
Abstract
The main focus of the presented study is a multi-variant accuracy assessment of a photogrammetric 2D and 3D data collection, whose accuracy meets the appropriate technical requirements, based on the block of 858 digital images (4.6 cm ground sample distance) acquired by Trimble [...] Read more.
The main focus of the presented study is a multi-variant accuracy assessment of a photogrammetric 2D and 3D data collection, whose accuracy meets the appropriate technical requirements, based on the block of 858 digital images (4.6 cm ground sample distance) acquired by Trimble® UX5 unmanned aircraft system equipped with Sony NEX-5T compact system camera. All 1418 well-defined ground control and check points were a posteriori measured applying Global Navigation Satellite Systems (GNSS) using the real-time network method. High accuracy of photogrammetric products was obtained by the computations performed according to the proposed methodology, which assumes multi-variant images processing and extended error analysis. The detection of blurred images was preprocessed applying Laplacian operator and Fourier transform implemented in Python using the Open Source Computer Vision library. The data collection was performed in Pix4Dmapper suite supported by additional software: in the bundle block adjustment (results verified using RealityCapure and PhotoScan applications), on the digital surface model (CloudCompare), and georeferenced orthomosaic in GeoTIFF format (AutoCAD Civil 3D). The study proved the high accuracy and significant statistical reliability of unmanned aerial vehicle (UAV) imaging 2D and 3D surveys. The accuracy fulfills Polish and US technical requirements of planimetric and vertical accuracy (root mean square error less than or equal to 0.10 m and 0.05 m). Full article
Show Figures

Figure 1

27 pages, 3707 KB  
Review
Genetics and Extracellular Vesicles of Pediatrics Sleep Disordered Breathing and Epilepsy
by Abdelnaby Khalyfa and David Sanz-Rubio
Int. J. Mol. Sci. 2019, 20(21), 5483; https://doi.org/10.3390/ijms20215483 - 4 Nov 2019
Cited by 10 | Viewed by 5182
Abstract
Sleep remains one of the least understood phenomena in biology, and sleep disturbances are one of the most common behavioral problems in childhood. The etiology of sleep disorders is complex and involves both genetic and environmental factors. Epilepsy is the most popular childhood [...] Read more.
Sleep remains one of the least understood phenomena in biology, and sleep disturbances are one of the most common behavioral problems in childhood. The etiology of sleep disorders is complex and involves both genetic and environmental factors. Epilepsy is the most popular childhood neurological condition and is characterized by an enduring predisposition to generate epileptic seizures, and the neurobiological, cognitive, psychological, and social consequences of this condition. Sleep and epilepsy are interrelated, and the importance of sleep in epilepsy is less known. The state of sleep also influences whether a seizure will occur at a given time, and this differs considerably for various epilepsy syndromes. The development of epilepsy has been associated with single or multiple gene variants. The genetics of epilepsy is complex and disorders exhibit significant genetic heterogeneity and variability in the expressivity of seizures. Phenobarbital (PhB) is the most widely used antiepileptic drug. With its principal mechanism of action to prolong the opening time of the γ-aminobutyric acid (GABA)-A receptor-associated chloride channel, it enhances chloride anion influx into neurons, with subsequent hyperpolarization, thereby reducing excitability. Enzymes that metabolize pharmaceuticals including PhB are well known for having genetic polymorphisms that contribute to adverse drug–drug interactions. PhB metabolism is highly dependent upon the cytochrome P450 (CYP450) and genetic polymorphisms can lead to variability in active drug levels. The highly polymorphic CYP2C19 isozymes are responsible for metabolizing a large portion of routinely prescribed drugs and variants contribute significantly to adverse drug reactions and therapeutic failures. A limited number of CYP2C19 single nucleotide polymorphisms (SNPs) are involved in drug metabolism. Extracellular vesicles (EVs) are circular membrane fragments released from the endosomal compartment as exosomes are shed from the surfaces of the membranes of most cell types. Increasing evidence indicated that EVs play a pivotal role in cell-to-cell communication. Theses EVs may play an important role between sleep, epilepsy, and treatments. The discovery of exosomes provides potential strategies for the diagnosis and treatment of many diseases including neurocognitive deficit. The aim of this study is to better understand and provide further knowledge about the metabolism and interactions between phenobarbital and CYP2C19 polymorphisms in children with epilepsy, interplay between sleep, and EVs. Understanding this interplay between epilepsy and sleep is helpful in the optimal treatment of all patients with epileptic seizures. The use of genetics and extracellular vesicles as precision medicine for the diagnosis and treatment of children with sleep disorder will improve the prognosis and the quality of life in patients with epilepsy. Full article
(This article belongs to the Special Issue Epilepsy: From Molecular Mechanisms to Targeted Therapies 2.0)
Show Figures

Graphical abstract

16 pages, 10340 KB  
Article
A New Approach for Inspection of Selected Geometric Parameters of a Railway Track Using Image-Based Point Clouds
by Grzegorz Gabara and Piotr Sawicki
Sensors 2018, 18(3), 791; https://doi.org/10.3390/s18030791 - 6 Mar 2018
Cited by 38 | Viewed by 8400
Abstract
The paper presents the results of testing a proposed image-based point clouds measuring method for geometric parameters determination of a railway track. The study was performed based on a configuration of digital images and reference control network. A DSLR (digital Single-Lens-Reflex) Nikon D5100 [...] Read more.
The paper presents the results of testing a proposed image-based point clouds measuring method for geometric parameters determination of a railway track. The study was performed based on a configuration of digital images and reference control network. A DSLR (digital Single-Lens-Reflex) Nikon D5100 camera was used to acquire six digital images of the tested section of railway tracks. The dense point clouds and the 3D mesh model were generated with the use of two software systems, RealityCapture and PhotoScan, which have implemented different matching and 3D object reconstruction techniques: Multi-View Stereo and Semi-Global Matching, respectively. The study found that both applications could generate appropriate 3D models. Final meshes of 3D models were filtered with the MeshLab software. The CloudCompare application was used to determine the track gauge and cant for defined cross-sections, and the results obtained from point clouds by dense image matching techniques were compared with results of direct geodetic measurements. The obtained RMS difference in the horizontal (gauge) and vertical (cant) plane was RMS∆ < 0.45 mm. The achieved accuracy meets the accuracy condition of measurements and inspection of the rail tracks (error m < 1 mm), specified in the Polish branch railway instruction Id-14 (D-75) and the European technical norm EN 13848-4:2011. Full article
(This article belongs to the Special Issue Sensors for Deformation Monitoring of Large Civil Infrastructures)
Show Figures

Figure 1

Back to TopTop