Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Fuyang reservoir

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 5840 KB  
Article
Microscopic Distribution and Development Strategy of Residual Oil in Tight Sandstone
by Xiaodong Yi, Meiling Zhang and Guangshan Mu
Processes 2023, 11(7), 1907; https://doi.org/10.3390/pr11071907 - 25 Jun 2023
Cited by 6 | Viewed by 1810
Abstract
Pore and permeability are distributed discontinuously and unevenly in the dominant sedimentary model of the lateral accretion body inside the meandering river point bar of the Fuyang reservoir of the Yushulin oilfield. Based on the water flooding experiments of field core samples, the [...] Read more.
Pore and permeability are distributed discontinuously and unevenly in the dominant sedimentary model of the lateral accretion body inside the meandering river point bar of the Fuyang reservoir of the Yushulin oilfield. Based on the water flooding experiments of field core samples, the influence of pore permeability conditions on residual oil distribution type and water cutting rate was studied by using the microscopic visualization technology enabled through a photolithographically fabricated glass model. It is found that the residual oil in samples shows five discontinuous types, which are cluster, columnar, oil droplet, membrane, and blind end. In the stages with low, medium, and high water cutting rates, the proportion of clustered residual oil in the samples with different permeability is high, reflecting the situation that it is difficult for injected water to spread widely in tight oil reservoirs. With the decrease of permeability, the proportion of membrane and blind end residual oil gradually increases, which indicates that the thin pore throat can produce large restrictions on residual oil, resulting in residual oil enrichment. At the same time, the water flooding experiment was carried out by changing the displacement direction and periodic water injection. It was found that changing the displacement direction was beneficial to the recovery of residual oil in the thin pore throat and avoided the dominant seepage of injected water in the big pore throat, and the recovery rate was increased by more than 2.14%. Periodic water injection, which was conducive to adjusting the displacement pressure difference, reduced the constraining force of the throat on residual oil and increased the recovery rate by more than 3.98%. The actual well area with closed coring wells and dynamic production data is preferred for the application of experimental research results. Changing displacement direction and periodic water injection increased the residual oil recovery by more than 3%. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 10344 KB  
Article
CO2-Water-Rock Interaction and Pore Structure Evolution of the Tight Sandstones of the Quantou Formation, Songliao Basin
by Yue Zhao, Songtao Wu, Yongjin Chen, Cong Yu, Zhichao Yu, Ganlin Hua, Modi Guan, Minjie Lin and Xiaobo Yu
Energies 2022, 15(24), 9268; https://doi.org/10.3390/en15249268 - 7 Dec 2022
Cited by 6 | Viewed by 2432
Abstract
As an important part of carbon dioxide capture, utilization and storage (CCUS), the progress of injecting CO2 into oil reservoirs could increase the recovery rate and achieve large-scale carbon storage. It has become one of the most important carbon storage methods around [...] Read more.
As an important part of carbon dioxide capture, utilization and storage (CCUS), the progress of injecting CO2 into oil reservoirs could increase the recovery rate and achieve large-scale carbon storage. It has become one of the most important carbon storage methods around the world. This paper selected the tight sandstone of the fourth member of the Quantou Formation in the southern Songliao Basin to carry out a CO2 storage physical simulation experiment. Representative samples were collected at 24 h, 72 h, 192 h and 432 h to study the CO2 water-rock interaction and to analyze the mineral composition, pore structure and the evolutionary characteristics of physical reservoir properties over time. Physical property analysis, Ion analysis, X-ray diffraction mineral analysis, QEMSCAN mineral analysis, scanning electron microscopy and high-resolution CT scanning techniques were adopted. The main points of understanding were: (i) It shows a differential evolution of different minerals following the storage time of CO2, and carbonate minerals are mainly dissolved with ankerite as a typical representation; a small amount of calcite is formed in 24 h, and dissolved in the later period; feldspar and quartz were partially dissolved; clay mineral precipitation blocked the pores and gaps; (ii) The evolution in mineral variation leads to the complexity of pore structure evolution, following a trend of “small pores decreasing and large pores increasing” with extending storage time. The final porosity and permeability ratios gradually increase from 4.07% to 21.31% and from 2.97% to 70.06% respectively; (iii) There is a negative correlation between the increasing ratio and the original physical properties of the tight stones due to the dissolution of ankerite. Relevant research could provide scientific guidance and technical support for the geological storage of CO2 in lacustrine tight continental sandstones and the development of CCUS technology. Full article
Show Figures

Figure 1

Back to TopTop