Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Frangi vesselness filter

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 29405 KiB  
Article
Assessing the Mass Transfer Coefficient in Jet Bioreactors with Classical Computer Vision Methods and Neural Networks Algorithms
by Irina Nizovtseva, Vladimir Palmin, Ivan Simkin, Ilya Starodumov, Pavel Mikushin, Alexander Nozik, Timur Hamitov, Sergey Ivanov, Sergey Vikharev, Alexei Zinovev, Vladislav Svitich, Matvey Mogilev, Margarita Nikishina, Simon Kraev, Stanislav Yurchenko, Timofey Mityashin, Dmitrii Chernushkin, Anna Kalyuzhnaya and Felix Blyakhman
Algorithms 2023, 16(3), 125; https://doi.org/10.3390/a16030125 - 21 Feb 2023
Cited by 8 | Viewed by 3128
Abstract
Development of energy-efficient and high-performance bioreactors requires progress in methods for assessing the key parameters of the biosynthesis process. With a wide variety of approaches and methods for determining the phase contact area in gas–liquid flows, the question of obtaining its accurate quantitative [...] Read more.
Development of energy-efficient and high-performance bioreactors requires progress in methods for assessing the key parameters of the biosynthesis process. With a wide variety of approaches and methods for determining the phase contact area in gas–liquid flows, the question of obtaining its accurate quantitative estimation remains open. Particularly challenging are the issues of getting information about the mass transfer coefficients instantly, as well as the development of predictive capabilities for the implementation of effective flow control in continuous fermentation both on the laboratory and industrial scales. Motivated by the opportunity to explore the possibility of applying classical and non-classical computer vision methods to the results of high-precision video records of bubble flows obtained during the experiment in the bioreactor vessel, we obtained a number of results presented in the paper. Characteristics of the bioreactor’s bubble flow were estimated first by classical computer vision (CCV) methods including an elliptic regression approach for single bubble boundaries selection and clustering, image transformation through a set of filters and developing an algorithm for separation of the overlapping bubbles. The application of the developed method for the entire video filming makes it possible to obtain parameter distributions and set dropout thresholds in order to obtain better estimates due to averaging. The developed CCV methodology was also tested and verified on a collected and labeled manual dataset. An onwards deep neural network (NN) approach was also applied, for instance the segmentation task, and has demonstrated certain advantages in terms of high segmentation resolution, while the classical one tends to be more speedy. Thus, in the current manuscript both advantages and disadvantages of the classical computer vision method (CCV) and neural network approach (NN) are discussed based on evaluation of bubbles’ number and their area defined. An approach to mass transfer coefficient estimation methodology in virtue of obtained results is also represented. Full article
(This article belongs to the Special Issue Recent Advances in Algorithms for Computer Vision Applications)
Show Figures

Figure 1

21 pages, 3573 KiB  
Article
Local-Sensitive Connectivity Filter (LS-CF): A Post-Processing Unsupervised Improvement of the Frangi, Hessian and Vesselness Filters for Multimodal Vessel Segmentation
by Erick O. Rodrigues, Lucas O. Rodrigues, João H. P. Machado, Dalcimar Casanova, Marcelo Teixeira, Jeferson T. Oliva, Giovani Bernardes and Panos Liatsis
J. Imaging 2022, 8(10), 291; https://doi.org/10.3390/jimaging8100291 - 21 Oct 2022
Cited by 4 | Viewed by 3453
Abstract
A retinal vessel analysis is a procedure that can be used as an assessment of risks to the eye. This work proposes an unsupervised multimodal approach that improves the response of the Frangi filter, enabling automatic vessel segmentation. We propose a filter that [...] Read more.
A retinal vessel analysis is a procedure that can be used as an assessment of risks to the eye. This work proposes an unsupervised multimodal approach that improves the response of the Frangi filter, enabling automatic vessel segmentation. We propose a filter that computes pixel-level vessel continuity while introducing a local tolerance heuristic to fill in vessel discontinuities produced by the Frangi response. This proposal, called the local-sensitive connectivity filter (LS-CF), is compared against a naive connectivity filter to the baseline thresholded Frangi filter response and to the naive connectivity filter response in combination with the morphological closing and to the current approaches in the literature. The proposal was able to achieve competitive results in a variety of multimodal datasets. It was robust enough to outperform all the state-of-the-art approaches in the literature for the OSIRIX angiographic dataset in terms of accuracy and 4 out of 5 works in the case of the IOSTAR dataset while also outperforming several works in the case of the DRIVE and STARE datasets and 6 out of 10 in the CHASE-DB dataset. For the CHASE-DB, it also outperformed all the state-of-the-art unsupervised methods. Full article
(This article belongs to the Special Issue Current Methods in Medical Image Segmentation)
Show Figures

Figure 1

6 pages, 1064 KiB  
Article
CoroFinder: A New Tool for Real Time Detection and Tracking of Coronary Arteries in Contrast-Free Cine-Angiography
by Paolo Zaffino, Maria Francesca Spadea, Ciro Indolfi and Salvatore De Rosa
J. Pers. Med. 2022, 12(3), 411; https://doi.org/10.3390/jpm12030411 - 6 Mar 2022
Cited by 2 | Viewed by 2560
Abstract
Coronary Angiography (CA) is the standard of reference to diagnose coronary artery disease. Yet, only a portion of the information it conveys is usually used. Quantitative Coronary Angiography (QCA) reliably contributes to improving the measurable assessment of CA. In this work, we developed [...] Read more.
Coronary Angiography (CA) is the standard of reference to diagnose coronary artery disease. Yet, only a portion of the information it conveys is usually used. Quantitative Coronary Angiography (QCA) reliably contributes to improving the measurable assessment of CA. In this work, we developed a new software, CoroFinder, able to automatically identify epicardial coronary arteries and to dynamically track the vessel profile in dye-free frames. The coronary tree is automatically segmented by Frangi’s filter in the angiogram’s frames where vessels are contrasted (“template frames”). Afterward, the image similarity among each template frame and the dye-free images is scored by cross-correlation. Finally, each dye-free image is associated with the most similar template frame, resulting in an estimation of vessel contour. CoroFinder allows locating the position of coronary arteries in absence of contrast dye. The developed algorithm is robust to diverse vessel curvatures, variation of vessel widths, and the presence of stenoses. This article describes the newly developed CoroFinder algorithm and the associated software and provides an overview of its potential application in research and for translation to the clinic. Full article
(This article belongs to the Special Issue Diagnosis, Treatment and Prognosis of Cardiovascular Disease)
Show Figures

Figure 1

18 pages, 7025 KiB  
Article
Retinal Vessel Segmentation via Structure Tensor Coloring and Anisotropy Enhancement
by Mehmet Nergiz and Mehmet Akın
Symmetry 2017, 9(11), 276; https://doi.org/10.3390/sym9110276 - 14 Nov 2017
Cited by 15 | Viewed by 8063
Abstract
Retinal vessel segmentation is one of the preliminary tasks for developing diagnosis software systems related to various retinal diseases. In this study, a fully automated vessel segmentation system is proposed. Firstly, the vessels are enhanced using a Frangi Filter. Afterwards, Structure Tensor is [...] Read more.
Retinal vessel segmentation is one of the preliminary tasks for developing diagnosis software systems related to various retinal diseases. In this study, a fully automated vessel segmentation system is proposed. Firstly, the vessels are enhanced using a Frangi Filter. Afterwards, Structure Tensor is applied to the response of the Frangi Filter and a 4-D tensor field is obtained. After decomposing the Eigenvalues of the tensor field, the anisotropy between the principal Eigenvalues are enhanced exponentially. Furthermore, this 4-D tensor field is converted to the 3-D space which is composed of energy, anisotropy and orientation and then a Contrast Limited Adaptive Histogram Equalization algorithm is applied to the energy space. Later, the obtained energy space is multiplied by the enhanced mean surface curvature of itself and the modified 3-D space is converted back to the 4-D tensor field. Lastly, the vessel segmentation is performed by using Otsu algorithm and tensor coloring method which is inspired by the ellipsoid tensor visualization technique. Finally, some post-processing techniques are applied to the segmentation result. In this study, the proposed method achieved mean sensitivity of 0.8123, 0.8126, 0.7246 and mean specificity of 0.9342, 0.9442, 0.9453 as well as mean accuracy of 0.9183, 0.9442, 0.9236 for DRIVE, STARE and CHASE_DB1 datasets, respectively. The mean execution time of this study is 6.104, 6.4525 and 18.8370 s for the aforementioned three datasets respectively. Full article
Show Figures

Figure 1

Back to TopTop