Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Fraction of controlling votes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5403 KB  
Article
RGB Image-Derived Indicators for Spatial Assessment of the Impact of Broadleaf Weeds on Wheat Biomass
by Christelle Gée and Emmanuel Denimal
Remote Sens. 2020, 12(18), 2982; https://doi.org/10.3390/rs12182982 - 14 Sep 2020
Cited by 20 | Viewed by 5591
Abstract
In precision agriculture, the development of proximal imaging systems embedded in autonomous vehicles allows to explore new weed management strategies for site-specific plant application. Accurate monitoring of weeds while controlling wheat growth requires indirect measurements of leaf area index (LAI) and above-ground dry [...] Read more.
In precision agriculture, the development of proximal imaging systems embedded in autonomous vehicles allows to explore new weed management strategies for site-specific plant application. Accurate monitoring of weeds while controlling wheat growth requires indirect measurements of leaf area index (LAI) and above-ground dry matter biomass (BM) at early growth stages. This article explores the potential of RGB images to assess crop-weed competition in a wheat (Triticum aestivum L.) crop by generating two new indicators, the weed pressure (WP) and the local wheat biomass production (δBMc). The fractional vegetation cover (FVC) of the crop and the weeds was automatically determined from the images with a SVM-RBF classifier, using bag of visual word vectors as inputs. It is based on a new vegetation index called MetaIndex, defined as a vote of six indices widely used in the literature. Beyond a simple map of weed infestation, the map of WP describes the crop-weed competition. The map of δBMc, meanwhile, evaluates the local wheat above-ground biomass production and informs us about a potential stress. It is generated from the wheat FVC because it is highly correlated with LAI (r2 = 0.99) and BM (r2 = 0.93) obtained by destructive methods. By combining these two indicators, we aim at determining whether the origin of the wheat stress is due to weeds or not. This approach opens up new perspectives for the monitoring of weeds and the monitoring of their competition during crop growth with non-destructive and proximal sensing technologies in the early stages of development. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Graphical abstract

19 pages, 11591 KB  
Article
SpArcFiRe: Enhancing Spiral Galaxy Recognition Using Arm Analysis and Random Forests
by Pedro Silva, Leon T. Cao and Wayne B. Hayes
Galaxies 2018, 6(3), 95; https://doi.org/10.3390/galaxies6030095 - 5 Sep 2018
Cited by 10 | Viewed by 4970
Abstract
Automated quantification of galaxy morphology is necessary because the size of upcoming sky surveys will overwhelm human volunteers. Existing classification schemes are inadequate because (a) their uncertainty increases near the boundary of classes and astronomers need more control over these uncertainties; (b) galaxy [...] Read more.
Automated quantification of galaxy morphology is necessary because the size of upcoming sky surveys will overwhelm human volunteers. Existing classification schemes are inadequate because (a) their uncertainty increases near the boundary of classes and astronomers need more control over these uncertainties; (b) galaxy morphology is continuous rather than discrete; and (c) sometimes we need to know not only the type of an object, but whether a particular image of the object exhibits visible structure. We propose that regression is better suited to these tasks than classification, and focus specifically on determining the extent to which an image of a spiral galaxy exhibits visible spiral structure. We use the human vote distributions from Galaxy Zoo 1 (GZ1) to train a random forest of decision trees to reproduce the fraction of GZ1 humans who vote for the “Spiral” class. We prefer the random forest model over other black box models like neural networks because it allows us to trace post hoc the precise reasoning behind the regression of each image. Finally, we demonstrate that using features from SpArcFiRe—a code designed to isolate and quantify arm structure in spiral galaxies—improves regression results over and above using traditional features alone, across a sample of 470,000 galaxies from the Sloan Digital Sky Survey. Full article
Show Figures

Figure 1

24 pages, 338 KB  
Article
Corporate Risk Disclosure and Corporate Governance
by Kaouthar Lajili
J. Risk Financial Manag. 2009, 2(1), 94-117; https://doi.org/10.3390/jrfm2010094 - 31 Dec 2009
Cited by 38 | Viewed by 13052
Abstract
To date, research which integrates corporate governance and risk management has been limited. Yet, risk exposure and management are increasingly becoming the core function of modern business enterprises in various sectors and industries domestically and globally. Risk identification and management are crucial in [...] Read more.
To date, research which integrates corporate governance and risk management has been limited. Yet, risk exposure and management are increasingly becoming the core function of modern business enterprises in various sectors and industries domestically and globally. Risk identification and management are crucial in any business strategy design and implementation. From the investors’ point of view, knowledge of the risk profile, risk appetite and risk management are key elements in making sound portfolio investment decisions. This paper examines the relationships between corporate governance mechanisms and risk disclosure behavior using a sample of Canadian publicly-traded companies (TSX 230). Results show that Canadian public companies are more likely to disclose risk management information over and above the mandatory risk disclosures, if they are larger in size and if their boards of directors have more independent members. Minority voting control ownership structures appear to negatively impact risk disclosure and CEO incentive compensation shows mixed results. The paper concludes that more research is needed to further assess the impact of various governance mechanisms on corporate risk management and disclosure behavior. Full article
Show Figures

Figure 1

Back to TopTop