Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Forenseq

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 195 KiB  
Article
Characterization of the 172 SNPs Included in the ForenSeq™ DNA Signature Prep Kit in a Population from Northeast Italy
by Chiara Saccardo, Domenico De Leo and Stefania Turrina
Int. J. Mol. Sci. 2025, 26(11), 5035; https://doi.org/10.3390/ijms26115035 - 23 May 2025
Viewed by 343
Abstract
In this study, 172 Single-Nucleotide Polymorphisms (SNPs) (94 identity-informative SNPs, 56 ancestry-informative SNPs, and 22 phenotypic-informative SNPs) included in the ForenSeq™ DNA Signature Prep kit/DNA Primer Mix B (Verogen) were used for genotyping DNA samples from a population of twenty-one unrelated subjects, native [...] Read more.
In this study, 172 Single-Nucleotide Polymorphisms (SNPs) (94 identity-informative SNPs, 56 ancestry-informative SNPs, and 22 phenotypic-informative SNPs) included in the ForenSeq™ DNA Signature Prep kit/DNA Primer Mix B (Verogen) were used for genotyping DNA samples from a population of twenty-one unrelated subjects, native to Northeast Italy. SNP sequencing was performed with the MiSeq FGx™ Forensic Genomics System (Illumina-Verogen), and data were analyzed using the Universal Analysis Software (UAS) v1.2. Raw data underwent further examination with STRait Razor v3 (SRv3) to compare the target SNPs’ genotype calls made with UAS and to identify the presence of microhaplotypes (MHs) due to SNPs associated with the same target SNP’s amplicon. The allele (haplotype) frequencies, Hardy–Weinberg equilibrium, linkage disequilibrium, number of effective alleles (Ae), and relevant forensic statistic parameters were calculated. Among the 172 SNPs evaluated, 45 unique microhaplotypes were found, comprising a novel sequence variant never previously described. The presence of MHs resulted in an 8.00% rise in the typologies of unique sequences, leading to changes in Ae. Notably, for 12 out of the 94 iiSNPs, the values of Ae exceeded 2.00, which is generally associated with a higher expected heterozygosity and increased power of discrimination. Full article
(This article belongs to the Special Issue New Perspectives on Biology in Forensic Diagnostics)
13 pages, 1907 KiB  
Article
Biogeographical Ancestry Analyses Using the ForenSeqTM DNA Signature Prep Kit and Multiple Prediction Tools
by Nina Mjølsnes Salvo, Gunn-Hege Olsen, Thomas Berg and Kirstin Janssen
Genes 2024, 15(4), 510; https://doi.org/10.3390/genes15040510 - 18 Apr 2024
Cited by 1 | Viewed by 1826
Abstract
The inference of biogeographical ancestry (BGA) can assist in police investigations of serious crime cases and help to identify missing people and victims of mass disasters. In this study, we evaluated the typing performance of 56 ancestry-informative SNPs in 177 samples using the [...] Read more.
The inference of biogeographical ancestry (BGA) can assist in police investigations of serious crime cases and help to identify missing people and victims of mass disasters. In this study, we evaluated the typing performance of 56 ancestry-informative SNPs in 177 samples using the ForenSeq™ DNA Signature Prep Kit on the MiSeq FGx system. Furthermore, we compared the prediction accuracy of the tools Universal Analysis Software v1.2 (UAS), the FROG-kb, and GenoGeographer when inferring the ancestry of 503 Europeans, 22 non-Europeans, and 5 individuals with co-ancestry. The kit was highly sensitive with complete aiSNP profiles in samples with as low as 250pg input DNA. However, in line with others, we observed low read depth and occasional drop-out in some SNPs. Therefore, we suggest not using less than the recommended 1ng of input DNA. FROG-kb and GenoGeographer accurately predicted both Europeans (99.6% and 91.8% correct, respectively) and non-Europeans (95.4% and 90.9% correct, respectively). The UAS was highly accurate when predicting Europeans (96.0% correct) but performed poorer when predicting non-Europeans (40.9% correct). None of the tools were able to correctly predict individuals with co-ancestry. Our study demonstrates that the use of multiple prediction tools will increase the prediction accuracy of BGA inference in forensic casework. Full article
(This article belongs to the Special Issue State-of-the-Art in Forensic Genetics Volume II)
Show Figures

Figure 1

12 pages, 1675 KiB  
Article
Accuracy of Eye and Hair Color Prediction in Mexican Mestizos from Monterrey City Based on ForenSeqTM DNA Signature Prep
by José Alonso Aguilar-Velázquez, Blanca Jeannete Llamas-de-Dios, Miranda Fabiola Córdova-Mercado, Carolina Elena Coronado-Ávila, Orlando Salas-Salas, Andrés López-Quintero, Benito Ramos-González and Héctor Rangel-Villalobos
Genes 2023, 14(5), 1120; https://doi.org/10.3390/genes14051120 - 22 May 2023
Cited by 2 | Viewed by 9642
Abstract
Forensic genomic systems allow simultaneously analyzing identity informative (iiSNPs), ancestry informative (aiSNPs), and phenotype informative (piSNPs) genetic markers. Among these kits, the ForenSeq DNA Signature prep (Verogen) analyzes identity STRs and SNPs as well as 24 piSNPs from the HIrisPlex system to predict [...] Read more.
Forensic genomic systems allow simultaneously analyzing identity informative (iiSNPs), ancestry informative (aiSNPs), and phenotype informative (piSNPs) genetic markers. Among these kits, the ForenSeq DNA Signature prep (Verogen) analyzes identity STRs and SNPs as well as 24 piSNPs from the HIrisPlex system to predict the hair and eye color. We report herein these 24 piSNPs in 88 samples from Monterrey City (Northeast, Mexico) based on the ForenSeq DNA Signature prep. Phenotypes were predicted by genotype results with both Universal Analysis Software (UAS) and the web tool of the Erasmus Medical Center (EMC). We observed predominantly brown eyes (96.5%) and black hair (75%) phenotypes, whereas blue eyes, and blond and red hair were not observed. Both UAS and EMC showed high performance in eye color prediction (p ≥ 96.6%), but a lower accuracy was observed for hair color prediction. Overall, UAS hair color predictions showed better performance and robustness than those obtained with the EMC web tool (when hair shade is excluded). Although we employed a threshold (p > 70%), we suggest using the EMC enhanced approach to avoid the exclusion of a high number of samples. Finally, although our results are helpful to employ these genomic tools to predict eye color, caution is suggested for hair color prediction in Latin American (admixed) populations such as those studied herein, principally when no black color is predicted. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

23 pages, 2815 KiB  
Article
Whole Mitochondrial Genome Detection and Analysis of Two- to Four-Generation Maternal Pedigrees Using a New Massively Parallel Sequencing Panel
by Dan Peng, Jiaojiao Geng, Jingyi Yang, Jiajun Liu, Nana Wang, Riga Wu and Hongyu Sun
Genes 2023, 14(4), 912; https://doi.org/10.3390/genes14040912 - 14 Apr 2023
Cited by 7 | Viewed by 2621
Abstract
Mitochondrial DNA (mtDNA) is an effective genetic marker in forensic practice, especially for aged bones and hair shafts. Detection of the whole mitochondrial genome (mtGenome) using traditional Sanger-type sequencing is laborious and time-consuming. Additionally, its ability to distinguish point heteroplasmy (PHP) and length [...] Read more.
Mitochondrial DNA (mtDNA) is an effective genetic marker in forensic practice, especially for aged bones and hair shafts. Detection of the whole mitochondrial genome (mtGenome) using traditional Sanger-type sequencing is laborious and time-consuming. Additionally, its ability to distinguish point heteroplasmy (PHP) and length heteroplasmy (LHP) is limited. The application of massively parallel sequencing in mtDNA detection helps researchers to study the mtGenome in-depth. The ForenSeq mtDNA Whole Genome Kit, which contains a total of 245 short amplicons, is one of the multiplex library preparation kits for the mtGenome. We used this system to detect the mtGenome in the blood samples and hair shafts of thirty-three individuals from eight two-generation pedigrees, one three-generation pedigree, and one four-generation pedigree. High-quality sequencing results were obtained. Ten unique mtGenome haplotypes were observed in the mothers from the ten pedigrees. A total of 26 PHPs were observed using the interpretation threshold of 6%. Eleven types of LHPs in six regions were evaluated in detail. When considering homoplasmic variants only, consistent mtGenome haplotypes were observed between the twice-sequenced libraries and between the blood and hair shafts from the same individual and among maternal relatives in the pedigrees. Four inherited PHPs were observed, and the remainder were de novo/disappearing PHPs in the pedigrees. Our results demonstrate the effective capability of the ForenSeq mtDNA Whole Genome Kit to generate the complete mtGenome in blood and hair shafts, as well as the complexity of mtDNA haplotype comparisons between different types of maternal relatives when heteroplasmy is considered. Full article
(This article belongs to the Special Issue Advances in Forensic Molecular Genetics)
Show Figures

Figure 1

47 pages, 2531 KiB  
Article
Human Mitochondrial Control Region and mtGenome: Design and Forensic Validation of NGS Multiplexes, Sequencing and Analytical Software
by Cydne L. Holt, Kathryn M. Stephens, Paulina Walichiewicz, Keenan D. Fleming, Elmira Forouzmand and Shan-Fu Wu
Genes 2021, 12(4), 599; https://doi.org/10.3390/genes12040599 - 19 Apr 2021
Cited by 28 | Viewed by 7500
Abstract
Forensic mitochondrial DNA (mtDNA) analysis conducted using next-generation sequencing (NGS), also known as massively parallel sequencing (MPS), as compared to Sanger-type sequencing brings modern advantages, such as deep coverage per base (herein referred to as read depth per base pair (bp)), simultaneous sequencing [...] Read more.
Forensic mitochondrial DNA (mtDNA) analysis conducted using next-generation sequencing (NGS), also known as massively parallel sequencing (MPS), as compared to Sanger-type sequencing brings modern advantages, such as deep coverage per base (herein referred to as read depth per base pair (bp)), simultaneous sequencing of multiple samples (libraries) and increased operational efficiencies. This report describes the design and developmental validation, according to forensic quality assurance standards, of end-to-end workflows for two multiplexes, comprised of ForenSeq mtDNA control region and mtDNA whole-genome kits the MiSeq FGxTM instrument and ForenSeq universal analysis software (UAS) 2.0/2.1. Polymerase chain reaction (PCR) enrichment and a tiled amplicon approach target small, overlapping amplicons (60–150 bp and 60–209 bp for the control region and mtGenome, respectively). The system provides convenient access to data files that can be used outside of the UAS if desired. Studies assessed a range of environmental and situational variables, including but not limited to buccal samples, rootless hairs, dental and skeletal remains, concordance of control region typing between the two multiplexes and as compared to orthogonal data, assorted sensitivity studies, two-person DNA mixtures and PCR-based performance testing. Limitations of the system and implementation considerations are discussed. Data indicated that the two mtDNA multiplexes, MiSeq FGx and ForenSeq software, meet or exceed forensic DNA quality assurance (QA) guidelines with robust, reproducible performance on samples of various quantities and qualities. Full article
(This article belongs to the Special Issue Forensic Mitochondrial Genomics)
Show Figures

Figure 1

13 pages, 2036 KiB  
Article
Noninvasive Prenatal Paternity Testing with a Combination of Well-Established SNP and STR Markers Using Massively Parallel Sequencing
by Xuefeng Shen, Ran Li, Haixia Li, Yu Gao, Hui Chen, Ning Qu, Dan Peng, Riga Wu and Hongyu Sun
Genes 2021, 12(3), 454; https://doi.org/10.3390/genes12030454 - 22 Mar 2021
Cited by 14 | Viewed by 4731
Abstract
Cell-free fetal DNA (cffDNA) from maternal plasma has made it possible to develop noninvasive prenatal paternity testing (NIPPT). However, most studies have focused on customized single nucleotide polymorphism (SNP) typing systems and few have used conventional short tandem repeat (STR) markers. Based on [...] Read more.
Cell-free fetal DNA (cffDNA) from maternal plasma has made it possible to develop noninvasive prenatal paternity testing (NIPPT). However, most studies have focused on customized single nucleotide polymorphism (SNP) typing systems and few have used conventional short tandem repeat (STR) markers. Based on massively parallel sequencing (MPS), this study used a widely-accepted forensic multiplex assay system to evaluate the effect of noninvasive prenatal paternity testing with a combination of well-established SNP and STR markers. Using a ForenSeq DNA Signature Prep Kit, NIPPT was performed in 17 real parentage cases with monovular unborn fetuses at 7 to 24 gestational weeks. Different analytical strategies for the identification of paternally inherited allele (PIA) were developed to deal with SNPs and STRs. Combined paternity index (CPI) for 17 real trios as well as 272 unrelated trios was calculated. With the combination of SNPs and A-STRs, 82.35% (14/17), 88.24% (15/17), 94.12% (16/17), and 94.12% (16/17) of real trios could be accurately determined when the likelihood ratio (LR) threshold for paternity inclusion was set to 10,000, 1000, 100, and 10, respectively. This reveals that simultaneous surveys of SNP and STR markers included in the ForenSeq DNA Signature Prep Kit offer a promising method for NIPPT using MPS technology. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

10 pages, 243 KiB  
Article
Evaluation of OpenArray™ as a Genotyping Method for Forensic DNA Phenotyping and Human Identification
by Michele Ragazzo, Giulio Puleri, Valeria Errichiello, Laura Manzo, Laura Luzzi, Saverio Potenza, Claudia Strafella, Cristina Peconi, Fabio Nicastro, Valerio Caputo and Emiliano Giardina
Genes 2021, 12(2), 221; https://doi.org/10.3390/genes12020221 - 3 Feb 2021
Cited by 14 | Viewed by 4391
Abstract
A custom plate of OpenArray™ technology was evaluated to test 60 single-nucleotide polymorphisms (SNPs) validated for the prediction of eye color, hair color, and skin pigmentation, and for personal identification. The SNPs were selected from already validated subsets (Hirisplex-s, Precision ID Identity SNP [...] Read more.
A custom plate of OpenArray™ technology was evaluated to test 60 single-nucleotide polymorphisms (SNPs) validated for the prediction of eye color, hair color, and skin pigmentation, and for personal identification. The SNPs were selected from already validated subsets (Hirisplex-s, Precision ID Identity SNP Panel, and ForenSeq DNA Signature Prep Kit). The concordance rate and call rate for every SNP were calculated by analyzing 314 sequenced DNA samples. The sensitivity of the assay was assessed by preparing a dilution series of 10.0, 5.0, 1.0, and 0.5 ng. The OpenArray™ platform obtained an average call rate of 96.9% and a concordance rate near 99.8%. Sensitivity testing performed on serial dilutions demonstrated that a sample with 0.5 ng of total input DNA can be correctly typed. The profiles of the 19 SNPs selected for human identification reached a random match probability (RMP) of, on average, 10−8. An analysis of 21 examples of biological evidence from 8 individuals, that generated single short tandem repeat profiles during the routine workflow, demonstrated the applicability of this technology in real cases. Seventeen samples were correctly typed, revealing a call rate higher than 90%. Accordingly, the phenotype prediction revealed the same accuracy described in the corresponding validation data. Despite the reduced discrimination power of this system compared to STR based kits, the OpenArray™ System can be used to exclude suspects and prioritize samples for downstream analyses, providing well-established information about the prediction of eye color, hair color, and skin pigmentation. More studies will be needed for further validation of this technology and to consider the opportunity to implement this custom array with more SNPs to obtain a lower RMP and to include markers for studies of ancestry and lineage. Full article
(This article belongs to the Special Issue Advances in Forensic Genetics)
15 pages, 2261 KiB  
Article
Evaluation of DNA Extraction Methods Developed for Forensic and Ancient DNA Applications Using Bone Samples of Different Age
by Catarina Xavier, Mayra Eduardoff, Barbara Bertoglio, Christina Amory, Cordula Berger, Andrea Casas-Vargas, Johannes Pallua and Walther Parson
Genes 2021, 12(2), 146; https://doi.org/10.3390/genes12020146 - 22 Jan 2021
Cited by 38 | Viewed by 13405
Abstract
The efficient extraction of DNA from challenging samples, such as bones, is critical for the success of downstream genotyping analysis in molecular genetic disciplines. Even though the ancient DNA community has developed several protocols targeting small DNA fragments that are typically present in [...] Read more.
The efficient extraction of DNA from challenging samples, such as bones, is critical for the success of downstream genotyping analysis in molecular genetic disciplines. Even though the ancient DNA community has developed several protocols targeting small DNA fragments that are typically present in decomposed or old specimens, only recently forensic geneticists have started to adopt those protocols. Here, we compare an ancient DNA extraction protocol (Dabney) with a bone extraction method (Loreille) typically used in forensics. Real-time quantitative PCR and forensically representative typing methods including fragment size analysis and sequencing were used to assess protocol performance. We used four bone samples of different age in replicates to study the effects of both extraction methods. Our results confirm Loreille’s overall increased gain of DNA when enough tissue is available and Dabney’s improved efficiency for retrieving shorter DNA fragments that is beneficial when highly degraded DNA is present. The results suggest that the choice of extraction method needs to be based on available sample, degradation state, and targeted genotyping method. We modified the Dabney protocol by pooling parallel lysates prior to purification to study gain and performance in single tube typing assays and found that up to six parallel lysates lead to an almost linear gain of extracted DNA. These data are promising for further forensic investigations as the adapted Dabney protocol combines increased sensitivity for degraded DNA with necessary total DNA amount for forensic applications. Full article
(This article belongs to the Special Issue Forensic Mitochondrial Genomics)
Show Figures

Figure 1

11 pages, 937 KiB  
Article
Confirmation of Paternity despite Three Genetic Incompatibilities at Chromosome 2
by Andrzej Doniec, Wojciech Łuczak, Maria Wróbel, Miłosz Januła, Andrzej Ossowski, Paweł Grzmil and Tomasz Kupiec
Genes 2021, 12(1), 62; https://doi.org/10.3390/genes12010062 - 4 Jan 2021
Cited by 6 | Viewed by 3562
Abstract
DNA testing in cases of disputed paternity is a routine analysis carried out in genetic laboratories. The purpose of the test is to demonstrate similarities and differences in analyzed genetic markers between the alleged father, mother, and a child. The existence of differences [...] Read more.
DNA testing in cases of disputed paternity is a routine analysis carried out in genetic laboratories. The purpose of the test is to demonstrate similarities and differences in analyzed genetic markers between the alleged father, mother, and a child. The existence of differences in the examined loci between the child and the presumed father may indicate the exclusion of biological parenthood. However, another reason for such differences is genetic mutations, including chromosome aberrations and genome mutations. The presented results relate to genetic analyses carried out on three persons for the purposes of disputed paternity testing. A deviation from inheritance based on Mendel’s Law was found in 7 out of 53 STR-type loci examined. All polymorphic loci that ruled out the paternity of the alleged father were located on chromosome 2. Additional analysis of 32 insertion–deletion markers (DIPplex, Qiagen) and sequencing of 94 polymorphic positions of the single nucleotide polymorphism (SNP) type (Illumina, ForenSeq) did not exclude the defendant’s biological paternity. A sequence analysis of STR alleles and their flanking regions confirmed the hypothesis that the alleles on chromosome 2 of the child may originate only from the mother. The results of the tests did not allow exclusion of the paternity of the alleged father, but are an example of uniparental maternal disomy, which is briefly described in the literature. Full article
(This article belongs to the Special Issue Non-Mendelian Inheritance)
Show Figures

Figure 1

Back to TopTop