Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = FlagT4G CSFV vaccine candidate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 3228 KiB  
Article
Assessment of the Reversion to Virulence and Protective Efficacy in Pigs Receiving the Live Attenuated Classical Swine Fever Recombinant Vaccine Candidate FlagT4G
by Elizabeth Ramirez-Medina, Lauro Velazquez-Salinas, Alyssa Valladares, Ayushi Rai, Leeanna Burton, Leandro Sastre, Ediane Silva, Guillermo R. Risatti, Llilianne Ganges and Manuel V. Borca
Vaccines 2025, 13(5), 544; https://doi.org/10.3390/vaccines13050544 - 20 May 2025
Cited by 1 | Viewed by 565
Abstract
Background/Objectives: Control of classical swine fever virus (CSFV) in endemic countries relies on vaccination using live attenuated vaccines (LAVs). Most of these LAVs do not allow for the differentiation of vaccinated animals from infected animals (DIVA) based on their serological response. FlagT4G [...] Read more.
Background/Objectives: Control of classical swine fever virus (CSFV) in endemic countries relies on vaccination using live attenuated vaccines (LAVs). Most of these LAVs do not allow for the differentiation of vaccinated animals from infected animals (DIVA) based on their serological response. FlagT4G vaccine is a novel candidate that confers robust protective immunity early after vaccination and shows DIVA capabilities. Methods: This report presents the characterization of FlagT4G virus in terms of the stability of its genomic and attenuated phenotypes assessed by a reversion to virulence protocol, as well as its protective efficacy by determining the minimal protective dose. Results: Results presented here demonstrate that after five consecutive passages in groups of 5-week-old susceptible domestic pigs, FlagT4G virus remains genetically stable, and its attenuated phenotype remains unaltered. In terms of efficacy, FlagT4G virus induced solid protection against the intranasal challenge with 105 tissue culture infectious dose (TCID50) of virulent field isolate Brescia virus, even with a vaccine dose as low as 102 TCID50. Conclusions: Results presented here indicate that the FlagT4G vaccine may be a useful tool for CSFV control. Full article
(This article belongs to the Special Issue Veterinary Vaccines and Host Immune Responses)
Show Figures

Figure 1

16 pages, 2633 KiB  
Article
The FlagT4G Vaccine Confers a Strong and Regulated Immunity and Early Virological Protection against Classical Swine Fever
by José Alejandro Bohórquez, Miaomiao Wang, Ivan Díaz, Mònica Alberch, Marta Pérez-Simó, Rosa Rosell, Douglas P. Gladue, Manuel V. Borca and Llilianne Ganges
Viruses 2022, 14(9), 1954; https://doi.org/10.3390/v14091954 - 2 Sep 2022
Cited by 5 | Viewed by 2778
Abstract
Control of classical swine fever virus (CSFV) in endemic countries relies on vaccination, mostly using vaccines that do not allow for differentiation of vaccinated from infected animals (DIVA). FlagT4G vaccine is a novel candidate that confers robust immunity and shows DIVA capabilities. The [...] Read more.
Control of classical swine fever virus (CSFV) in endemic countries relies on vaccination, mostly using vaccines that do not allow for differentiation of vaccinated from infected animals (DIVA). FlagT4G vaccine is a novel candidate that confers robust immunity and shows DIVA capabilities. The present study assessed the immune response elicited by FlagT4G and its capacity to protect pigs for a short time after vaccination. Five days after a single dose of FlagT4G vaccine, animals were challenged with a highly virulent CSFV strain. A strong, but regulated, interferon-α response was found after vaccination. Vaccinated animals showed clinical and virological protection against the challenge, in the absence of antibody response at 5 days post-vaccination. Upon challenge, a rapid rise in the titers of CSFV neutralizing antibodies and an increase in the IFN-γ producing cells were noticed in all vaccinated-challenged pigs. Meanwhile, unvaccinated pigs showed severe clinical signs and high viral replication, being euthanized before the end of the trial. These animals were unable to generate neutralizing antibodies and IFN-γ responses after the CSFV challenge. The results from the present study assert the fast and efficient protection by FlagT4G, a highly promising tool for CSFV control worldwide. Full article
Show Figures

Figure 1

10 pages, 2704 KiB  
Article
Development of a Dendrimeric Peptide-Based Approach for the Differentiation of Animals Vaccinated with FlagT4G against Classical Swine Fever from Infected Pigs
by José Alejandro Bohórquez, Sira Defaus, Rosa Rosell, Marta Pérez-Simó, Mònica Alberch, Douglas P. Gladue, Manuel V. Borca, David Andreu and Llilianne Ganges
Viruses 2021, 13(10), 1980; https://doi.org/10.3390/v13101980 - 2 Oct 2021
Cited by 6 | Viewed by 2791
Abstract
Classical swine fever virus (CSFV) causes a viral disease of high epidemiological and economical significance that affects domestic and wild swine. Control of the disease in endemic countries is based on live-attenuated vaccines (LAVs) that induce an early protective immune response against highly [...] Read more.
Classical swine fever virus (CSFV) causes a viral disease of high epidemiological and economical significance that affects domestic and wild swine. Control of the disease in endemic countries is based on live-attenuated vaccines (LAVs) that induce an early protective immune response against highly virulent CSFV strains. The main disadvantage of these currently available LAVs is the lack of serological techniques to differentiate between vaccinated and infected animals (DIVA concept). Here, we describe the development of the FlagDIVA test, a serological diagnostic tool allowing for the differentiation between animals vaccinated with the FlagT4G candidate and those infected with CSFV field strains. The FlagDIVA test is a direct ELISA based on a dendrimeric peptide construct displaying a conserved epitope of CSFV structural protein E2. Although FlagDIVA detected anti-CSFV anti-bodies in infected animals, it did not recognize the antibody response of FlagT4G-vaccinated animals. Therefore, the FlagDIVA test constitutes a valuable accessory DIVA tool in implementing vaccination with the FlagT4G candidate. Full article
(This article belongs to the Special Issue Endemic and Emerging Swine Viruses 2021)
Show Figures

Figure 1

Back to TopTop