Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Fischer-Tropsch wax residue

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3000 KiB  
Article
Experimental Study on the Thermal Behavior Characteristics of the Oxidative Spontaneous Combustion Process of Fischer–Tropsch Wax Residue
by Tongshuang Liu, Jun Deng, Min Yao, Xiaojing Yong, Tiejian Zhao, Xin Yi and Yongjun He
Fire 2024, 7(10), 348; https://doi.org/10.3390/fire7100348 - 30 Sep 2024
Viewed by 1367
Abstract
Coal-to-liquid technology is a key technology to ensuring national energy security, with the Fischer–Tropsch synthesis process at its core. However, in actual production, Fischer–Tropsch wax residue exhibits the characteristics of spontaneous combustion due to heat accumulation, posing a fire hazard when exposed to [...] Read more.
Coal-to-liquid technology is a key technology to ensuring national energy security, with the Fischer–Tropsch synthesis process at its core. However, in actual production, Fischer–Tropsch wax residue exhibits the characteristics of spontaneous combustion due to heat accumulation, posing a fire hazard when exposed to air for extended periods. This significantly threatens the safe production operations of coal-to-liquid chemical enterprises. This study primarily focuses on the experimental investigation of the oxidative spontaneous combustion process of three typical types of wax residues produced during Fischer–Tropsch synthesis. Differential Scanning Calorimetry (DSC) was used to test the thermal flow curves of the three wax residue samples. Kinetic analysis was performed using the Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) methods to calculate their apparent activation energy. This study analyzed the thermal behavior characteristics, exothermic properties, and kinetic parameters of three typical wax residue samples, exploring the ease of reaction between wax residues and oxygen and their tendency for spontaneous combustion. The results indicate that Wax Residue 1 is rich in low-carbon chain alkanes and olefins, Wax Residue 2 contains relatively fewer low-carbon chain alkanes and olefins, while Wax Residue 3 primarily consists of high-carbon chain alkanes and olefins. This leads to different thermal behavior characteristics among the three typical wax residue samples, with Wax Residue 1 having the lowest heat release and average apparent activation energy and Wax Residue 3 having the highest heat release and average apparent activation energy. These findings suggest that Wax Residue 1 has a higher tendency for spontaneous combustion. This research provides a scientific basis for the safety management of the coal chemical industry, and further exploration into the storage and handling methods of wax residues could reduce fire risks in the future. Full article
(This article belongs to the Special Issue Investigation of Combustion Dynamics and Flame Properties of Fuel)
Show Figures

Figure 1

18 pages, 2358 KiB  
Article
Automotive e-Fuels via Hydrocracking of FT-Wax: e-Gasoline and e-Diesel Production
by Athanasios Dimitriadis, Loukia P. Chrysikou and Stella Bezergianni
Energies 2024, 17(11), 2756; https://doi.org/10.3390/en17112756 - 5 Jun 2024
Cited by 3 | Viewed by 2138
Abstract
The main goal of this research is the production of e-fuels in gasoline- and diesel-range hydrocarbons via the hydrocracking of wax from Fischer–Tropsch (FT-wax) synthesis. The hydrogen for the hydrocracking process originated from solar energy via water electrolysis, thus, the produced fuels were [...] Read more.
The main goal of this research is the production of e-fuels in gasoline- and diesel-range hydrocarbons via the hydrocracking of wax from Fischer–Tropsch (FT-wax) synthesis. The hydrogen for the hydrocracking process originated from solar energy via water electrolysis, thus, the produced fuels were called e-fuels. The FT-wax was produced via the Fischer–Tropsch synthesis of syngas stream from the chemical looping gasification (CLG) of biogenic residues. For the hydrocracking tests, a continuous-operation TRL3 (Technology Readiness Level) pilot plant was utilized. At first, hydrocracking catalyst screening was performed for the upgrading of the FT-wax. Three hydrocracking catalysts were investigated (Ni-W, Ni-W zeolite-supported, and Ni-W Al2O3-supported catalyst) via various operating conditions to identify the optimal operating window for each one. These three catalysts were selected, as they are typical catalysts that are used in the petroleum refinery industry. The optimal catalyst was found to be the NiW catalyst, as it led to high e-fuel yields (38 wt% e-gasoline and 47 wt% e-diesel) with an average hydrogen consumption. The optimum operating window was found at a 603 K reactor temperature, 8.3 MPa system pressure, 1 hr−1 LHSV, and 2500 scfb H2/oil ratio. In the next phase, the production of 5 L of hydrocracked wax was performed utilizing the optimum NiW catalyst and the optimal operating parameters. The liquid product was further fractionated to separate the fractions of e-gasoline, e-diesel, and e-heavy fuel. The e-gasoline and e-diesel fractions were qualitatively assessed, indicating that they fulfilled almost all EN 228 and EN 590 for petroleum-based gasoline and diesel, respectively. Furthermore, a 12-month storage study showed that the product can be stored for a period of 4 months in ambient conditions. In general, green transportation e-fuels with favorable properties that met most of the fossil fuels specifications were produced successfully from the hydrocracking of FT-wax. Full article
(This article belongs to the Special Issue Renewable Fuels for Internal Combustion Engines: 2nd Edition)
Show Figures

Figure 1

16 pages, 5468 KiB  
Article
Hydrocracking of Heavy Fischer–Tropsch Wax Distillation Residues and Its Blends with Vacuum Gas Oil Using Phonolite-Based Catalysts
by Jakub Frątczak, Héctor de Paz Carmona, Zdeněk Tišler, José M. Hidalgo Herrador and Zahra Gholami
Molecules 2021, 26(23), 7172; https://doi.org/10.3390/molecules26237172 - 26 Nov 2021
Cited by 12 | Viewed by 3901
Abstract
The Fischer–Tropsch heavy fraction is a potential feedstock for transport-fuels production through co-processing with fossil fuel fraction. However, there is still the need of developing new and green catalytic materials able to process this feedstock into valuable outputs. The present work studies the [...] Read more.
The Fischer–Tropsch heavy fraction is a potential feedstock for transport-fuels production through co-processing with fossil fuel fraction. However, there is still the need of developing new and green catalytic materials able to process this feedstock into valuable outputs. The present work studies the co-hydrocracking of the Fisher–Tropsch heavy fraction (FT-res.) with vacuum gas oil (VGO) at different ratios (FT-res. 9:1 VGO, FT-res. 7:3 VGO, and FT-res. 5:5 VGO) using phonolite-based catalysts (5Ni10W/Ph, 5Ni10Mo/Ph, and 5Co10Mo/Ph), paying attention to the overall conversion, yield, and selectivity of the products and properties. The co-processing experiments were carried out in an autoclave reactor at 450 °C, under 50 bars for 1 and 2 h. The phonolite-based catalysts were active in the hydrocracking of FT-res.:VGO mixtures, presenting different yields to gasoline, diesel, and jet fuel fractions, depending on the time of reaction and type of catalyst. Our results enable us to define the most suitable metal transition composition for the phonolite-based support as a hydrocracking catalyst. Full article
Show Figures

Graphical abstract

19 pages, 7672 KiB  
Article
Wax Separated Effectively from Fischer-Tropsch Wax Residue by Solvent Desorption: Thermodynamic and Kinetic Analysis
by Ling Li, Yuqi Zheng, Baokang Xu, Yanhua Xu and Zhiying Liu
Appl. Sci. 2021, 11(16), 7745; https://doi.org/10.3390/app11167745 - 23 Aug 2021
Cited by 3 | Viewed by 3490
Abstract
The separation and recycling of effective resources in Fischer-Tropsch wax residue (FTWR) are urgent because of the environmental hazards and energy waste they bring. In this study, organic solvents are used to separate recyclable resources from FTWR efficiently, achieving the goals of “Energy [...] Read more.
The separation and recycling of effective resources in Fischer-Tropsch wax residue (FTWR) are urgent because of the environmental hazards and energy waste they bring. In this study, organic solvents are used to separate recyclable resources from FTWR efficiently, achieving the goals of “Energy Recycle” and “Fisher-Tropsch Wax Residue Treatment”. The response surface methodology (RSM) response surface analysis model accurately evaluates the relationship among temperature, residence time, liquid–solid ratio, and desorption rate and obtains the best process parameters. The results show that the product yield can reach 82.28% under the conditions of 80 °C, 4 h, and the liquid–solid ratio of 24.4 mL/g. Through the kinetic analysis of the desorption process of FTWR, the results show that the desorption process conforms to the pseudo second-order kinetic model and the internal diffusion model. The thermodynamic function results showed that there were not only van der Waals forces in the desorption process, but other strong interaction forces such as hydrogen bonds. In addition, Langmuir, Freundlich, and BET equations are used to describe the desorption equilibrium. Scanning electron microscopy (SEM) were used to analyze the pore structure of FTWR during desorption. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Gas chromatography-mass spectrometer (GC-MS) analysis confirmed that the desorption product’s main component was hydrocarbons (50.38 wt%). Furthermore, naphthenic (22.95 wt%), primary alcohol (11.62 wt%), esters (8.7 wt%), and aromatic hydrocarbons (6.35 wt%) compounds were found and can be further purified and applied to other industrial fields. This study shows that using petroleum ether to separate and recover clean resources from Fischer-Tropsch wax residue is feasible and efficient and has potential industrial application prospects. Full article
Show Figures

Graphical abstract

Back to TopTop