Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Fe-Ti-rich wehrlites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 13784 KiB  
Article
Alkaline Silicate Metasomatism Recorded through Fe-Ti-Rich Mantle Xenoliths from the Calatrava Volcanic Field (Spain)
by Javier García Serrano, Carlos Villaseca, Cecilia Pérez-Soba and Manuel Jesús Román-Alpiste
Minerals 2024, 14(3), 241; https://doi.org/10.3390/min14030241 - 27 Feb 2024
Cited by 1 | Viewed by 1682
Abstract
Much of the lithospheric subcontinental mantle (SCLM) sampled in the Calatrava Volcanic Field (CVF) shows refertilization by alkaline metasomatic agents. The Cerro Pelado and El Palo ultramafic xenolith suites record the best evidence of this type of metasomatism in this volcanic field. Several [...] Read more.
Much of the lithospheric subcontinental mantle (SCLM) sampled in the Calatrava Volcanic Field (CVF) shows refertilization by alkaline metasomatic agents. The Cerro Pelado and El Palo ultramafic xenolith suites record the best evidence of this type of metasomatism in this volcanic field. Several groups of peridotite (lherzolite, wehrlite, and dunite) and pyroxenite (clinopyroxenite and websterite) xenoliths have been distinguished. Despite having scarce phlogopites and amphiboles as modal metasomatic phases, all studied xenoliths present a variable cryptic metasomatism, highlighted by the strong Fe-Ti enrichment and fractionated REE patterns in the most evolved wehrlite and pyroxenite varieties. They show a common trend of an Fe-Ti-Ca increase, whereas the pyroxenites are more depleted in Fe compared to the lherzolites and wehrlites. Trace-element (REE and multi-trace) patterns are roughly similar among them, suggesting different interactions and refertilization degrees by alkaline silicate melts. The same Sr–Nd isotopic EAR composition, combined with trace-element chemistry of metasomatic xenolith phases and phenocrysts from the Calatrava volcanics, highlights the main role of this magmatism in percolation processes beneath Central Iberia. These mantle xenoliths also show variable amounts of interstitial glass that originated by in situ partial melting, favored by the enriched chemical nature of cryptically metasomatized clinopyroxene during their volcanic transport. This alkaline-refertilized mantle type represents the main domain within the SCLM beneath Central Iberia, as was also recorded in other Western European Cenozoic volcanic fields. Full article
Show Figures

Figure 1

20 pages, 3025 KiB  
Article
Dynamic Metasomatism Experiments Investigating the Interaction between Migrating Potassic Melt and Garnet Peridotite
by Stephen F. Foley and Maik Pertermann
Geosciences 2021, 11(10), 432; https://doi.org/10.3390/geosciences11100432 - 18 Oct 2021
Cited by 11 | Viewed by 2752
Abstract
Dynamic metasomatism experiments were performed by reacting a lamproite melt with garnet peridotite by drawing melt through the peridotite into a vitreous carbon melt trap, ensuring the flow of melt through the peridotite and facilitating analysis of the melt. Pressure (2–3 GPa) and [...] Read more.
Dynamic metasomatism experiments were performed by reacting a lamproite melt with garnet peridotite by drawing melt through the peridotite into a vitreous carbon melt trap, ensuring the flow of melt through the peridotite and facilitating analysis of the melt. Pressure (2–3 GPa) and temperature (1050–1125 °C) conditions were chosen where the lamproite was molten but the peridotite was not. Phlogopite was formed and garnet and orthopyroxene reacted out, resulting in phlogopite wehrlite (2 GPa) and phlogopite harzburgite (3 GPa). Phlogopites in the peridotite have higher Mg/(Mg + Fe) and Cr2O3 and lower TiO2 than in the lamproite due to buffering by peridotite minerals, with Cr2O3 from the elimination of garnet. Compositional trends in phlogopites in the peridotite are similar to those in natural garnet peridotite xenoliths in kimberlites. Changes in melt composition resulting from the reaction show decreased TiO2 and increased Cr2O3 and Mg/(Mg + Fe). The loss of phlogopite components during migration through the peridotite results in low K2O/Na2O and K/Al in melts, indicating that chemical characteristics of lamproites are lost through reaction with peridotite so that emerging melts would be less extreme in composition. This indicates that lamproites are unlikely to be derived from a source rich in peridotite, and more likely originate in a source dominated by phlogopite-rich hydrous pyroxenites. Phlogopites from an experiment in which lamproite and peridotite were intimately mixed before the experiment did not produce the same phlogopite compositions, showing that care must be taken in the design of reaction experiments. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

Back to TopTop