Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = Fe-S cluster biogenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4712 KB  
Article
Identification of a Selective Inhibitor of Human NFS1, a Cysteine Desulfurase Involved in Fe-S Cluster Assembly, via Structure-Based Virtual Screening
by Zhilong Zhu, Haisheng Gan, Yanxiong Wang, Guanya Jia, Heng Li, Zhiwei Ma, Jun Wang, Xiaoya Shang and Weining Niu
Int. J. Mol. Sci. 2025, 26(6), 2782; https://doi.org/10.3390/ijms26062782 - 19 Mar 2025
Viewed by 1341
Abstract
Human cysteine desulfurase (NFS1) participates in numerous critical cellular processes, including iron–sulfur (Fe-S) cluster biosynthesis and tRNA thiolation. NFS1 overexpression has been observed in a variety of cancers, and thus it has been considered a promising anti-tumor therapeutic target. To date, however, no [...] Read more.
Human cysteine desulfurase (NFS1) participates in numerous critical cellular processes, including iron–sulfur (Fe-S) cluster biosynthesis and tRNA thiolation. NFS1 overexpression has been observed in a variety of cancers, and thus it has been considered a promising anti-tumor therapeutic target. To date, however, no inhibitors targeting NFS1 have been identified. Here, we report the identification of the first potent small-molecule inhibitor (Compound 53, PubChem CID 136847320) of NFS1 through a combination of virtual screening and biological validation. Compound 53 exhibited good selectivity against two other pyridoxal phosphate (PLP)-dependent enzymes. Treatment with Compound 53 inhibited the proliferation of lung cancer (A549) cells (IC50 = 16.3 ± 1.92 μM) and caused an increase in cellular iron levels due to the disruption of Fe-S cluster biogenesis. Furthermore, Compound 53, in combination with 2-AAPA, an inhibitor of glutathione reductase (GR) that elevates cellular reactive oxygen species (ROS) levels, further suppressed the proliferation of A549 cells by triggering ferroptotic cell death. Additionally, the key residues involved in the binding of the inhibitor to the active center of NFS1 were identified through a combination of molecular docking and site-directed mutagenesis. Taken together, we describe the identification of the first selective small-molecule inhibitor of human NFS1. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

20 pages, 3185 KB  
Article
Development of a Spectrophotometric Assay for the Cysteine Desulfurase from Staphylococcus aureus
by Emily Sabo, Connor Nelson, Nupur Tyagi, Veronica Stark, Katelyn Aasman, Christine N. Morrison, Jeffrey M. Boyd and Richard C. Holz
Antibiotics 2025, 14(2), 129; https://doi.org/10.3390/antibiotics14020129 - 26 Jan 2025
Cited by 1 | Viewed by 1792
Abstract
Background/Objectives: Antibiotic-resistant Staphylococcus aureus represents a growing threat in the modern world, and new antibiotic targets are needed for its successful treatment. One such potential target is the pyridoxal-5′-phosphate (PLP)-dependent cysteine desulfurase (SaSufS) of the SUF-like iron–sulfur (Fe-S) cluster biogenesis [...] Read more.
Background/Objectives: Antibiotic-resistant Staphylococcus aureus represents a growing threat in the modern world, and new antibiotic targets are needed for its successful treatment. One such potential target is the pyridoxal-5′-phosphate (PLP)-dependent cysteine desulfurase (SaSufS) of the SUF-like iron–sulfur (Fe-S) cluster biogenesis pathway upon which S. aureus relies exclusively for Fe-S synthesis. The current methods for measuring the activity of this protein have allowed for its recent characterization, but they are hampered by their use of chemical reagents which require long incubation times and may cause undesired side reactions. This problem highlights a need for the development of a rapid quantitative assay for the characterization of SaSufS in the presence of potential inhibitors. Methods: A spectrophotometric assay based on the well-documented absorbance of PLP intermediates at 340 nm was both compared to an established alanine detection assay and used to effectively measure the activity of SaSufS incubated in the absence and presence of the PLP-binding inhibitors, D-cycloserine (DCS) and L-cycloserine (LCS) as proof of concept. Methicillin-resistant S. aureus strain LAC was also grown in the presence of these inhibitors. Results: The Michaelis–Menten parameters kcat and Km of SaSufS were determined using the alanine detection assay and compared to corresponding intermediate-based values obtained spectrophotometrically in the absence and presence of the reducing agent tris(2-carboxyethyl)phosphine (TCEP). These data revealed the formation of both an intermediate that achieves steady-state during continued enzyme turnover and an intermediate that likely accumulates upon the stoppage of the catalytic cycle during the second turnover. The spectrophotometric method was then utilized to determine the half maximal inhibitory concentration (IC50) values for DCS and LCS binding to SaSufS, which are 2170 ± 920 and 62 ± 23 μM, respectively. Both inhibitors of SaSufS were also found to inhibit the growth of S. aureus. Conclusions: Together, this work offers a spectrophotometric method for the analysis of new inhibitors of SufS and lays the groundwork for the future development of novel antibiotics targeting cysteine desulfurases. Full article
(This article belongs to the Section Mechanisms and Structural Biology of Antibiotic Action)
Show Figures

Figure 1

14 pages, 2117 KB  
Article
Defects in the Maturation of Mitochondrial Iron–Sulfur Proteins: Biophysical Investigation of the MMDS3 Causing Gly104Cys Variant of IBA57
by Beatrice Bargagna, Tommaso Staderini, Steven H. Lang, Lucia Banci and Francesca Camponeschi
Int. J. Mol. Sci. 2024, 25(19), 10466; https://doi.org/10.3390/ijms251910466 - 28 Sep 2024
Viewed by 1653
Abstract
Multiple mitochondrial dysfunctions syndrome type 3 (MMDS3) is a rare autosomal recessive mitochondrial leukoencephalopathy caused by biallelic pathogenic variants in the IBA57 gene. The gene protein product, IBA57, has an unknown role in iron–sulfur (Fe-S) cluster biogenesis but is required for the maturation [...] Read more.
Multiple mitochondrial dysfunctions syndrome type 3 (MMDS3) is a rare autosomal recessive mitochondrial leukoencephalopathy caused by biallelic pathogenic variants in the IBA57 gene. The gene protein product, IBA57, has an unknown role in iron–sulfur (Fe-S) cluster biogenesis but is required for the maturation of mitochondrial [4Fe-4S] proteins. To better understand the role of IBA57 in MMDS3, we have investigated the impact of the pathogenic p.Gly104Cys (c.310G > T) variant on the structural and functional properties of IBA57. The Gly104Cys variant has been associated with a severe MMDS3 phenotype in both compound heterozygous and homozygous states, and defects in the activity of mitochondrial respiratory complexes and lipoic acid-dependent enzymes have been demonstrated in the affected patients. Size exclusion chromatography, also coupled to multiple angle light scattering, NMR, circular dichroism, and fluorescence spectroscopy characterization has shown that the Gly104Cys variant does not impair the conversion of the homo-dimeric [2Fe-2S]–ISCA22 complex into the hetero-dimeric IBA57–[2Fe-2S]–ISCA2 but significantly affects the stability of IBA57, in both its isolated form and in complex with ISCA2, thus providing a rationale for the severe MMDS3 phenotype associated with this variant. Full article
Show Figures

Figure 1

15 pages, 5096 KB  
Article
Downregulation of Iron–Sulfur Cluster Biogenesis May Contribute to Hyperglycemia-Mediated Diabetic Peripheral Neuropathy in Murine Models
by Lin Wu, Fei Huang, Zichen Sun, Jinghua Zhang, Siyu Xia, Hongting Zhao, Yutong Liu, Lu Yang, Yibing Ding, Dezhi Bian, Kuanyu Li and Yu Sun
Antioxidants 2024, 13(9), 1036; https://doi.org/10.3390/antiox13091036 - 26 Aug 2024
Cited by 4 | Viewed by 1722
Abstract
Background: Diabetic peripheral neuropathy (DPN) is considered one of the most common chronic complications of diabetes. Impairment of mitochondrial function is regarded as one of the causes. Iron–sulfur clusters are essential cofactors for numerous iron–sulfur (Fe-S)-containing proteins/enzymes, including mitochondrial electron transport chain complex [...] Read more.
Background: Diabetic peripheral neuropathy (DPN) is considered one of the most common chronic complications of diabetes. Impairment of mitochondrial function is regarded as one of the causes. Iron–sulfur clusters are essential cofactors for numerous iron–sulfur (Fe-S)-containing proteins/enzymes, including mitochondrial electron transport chain complex I, II, and III and aconitase. Methods: To determine the impact of hyperglycemia on peripheral nerves, we used Schwann-like RSC96 cells and classical db/db mice to detect the expression of Fe-S-related proteins, mitochondrially enzymatic activities, and iron metabolism. Subsequently, we treated high-glucose-induced RSC96 cells and db/db mice with pioglitazone (PGZ), respectively, to evaluate the effects on Fe-S cluster biogenesis, mitochondrial function, and animal behavior. Results: We found that the core components of Fe-S biogenesis machinery, such as frataxin (Fxn) and scaffold protein IscU, significantly decreased in high-glucose-induced RSC96 cells and db/db mice, accompanied by compromised mitochondrial Fe-S-containing enzymatic activities, such as complex I and II and aconitase. Consequently, oxidative stress and inflammation increased. PGZ not only has antidiabetic effects but also increases the expression of Fxn and IscU to enhance mitochondrial function in RSC96 cells and db/db mice. Meanwhile, PGZ significantly alleviated sciatic nerve injury and improved peripheral neuronal behavior, accompanied by suppressed oxidative stress and inflammation in the sciatic nerve of the db/db mice. Conclusions: Iron–sulfur cluster deficiency may contribute to hyperglycemia-mediated DPN. Full article
(This article belongs to the Special Issue Trace Elements, Redox Balance, and Neurological Diseases)
Show Figures

Figure 1

16 pages, 8212 KB  
Article
H2S Protects from Rotenone-Induced Ferroptosis by Stabilizing Fe-S Clusters in Rat Cardiac Cells
by Sara Linjacki, Yuehong Wang, Navjeet Baath, Devin Mantle and Guangdong Yang
Cells 2024, 13(5), 371; https://doi.org/10.3390/cells13050371 - 21 Feb 2024
Cited by 8 | Viewed by 2938
Abstract
Hydrogen sulfide (H2S) has been recently recognized as an important gasotransmitter with cardioprotections, and iron is vital for various cellular activities. This study explored the regulatory role of H2S on iron metabolism and mitochondrial functions in cultured rat cardiac [...] Read more.
Hydrogen sulfide (H2S) has been recently recognized as an important gasotransmitter with cardioprotections, and iron is vital for various cellular activities. This study explored the regulatory role of H2S on iron metabolism and mitochondrial functions in cultured rat cardiac cells. Rotenone, a mitochondrial complex I inhibitor, was used for establishing an in vitro model of ischemic cell damage. It was first found that rotenone induced oxidative stress and lipid peroxidation and decreased mitochondrial membrane potential and ATP generation, eventually causing cell death. The supplement of H2S at a physiologically relevant concentration protected from rotenone-induced ferroptotic cell death by reducing oxidative stress and mitochondrial damage, maintaining GPx4 expression and intracellular iron level. Deferiprone, an iron chelator, would also protect from rotenone-induced ferroptosis. Further studies demonstrated that H2S inhibited ABCB8-mediated iron efflux from mitochondria to cytosol and promoted NFS1-mediated Fe-S cluster biogenesis. It is also found that rotenone stimulated iron-dependent H2S generation. These results indicate that H2S would protect cardiac cells from ischemic damage through preserving mitochondrial functions and intracellular Fe-S cluster homeostasis. Full article
(This article belongs to the Section Cells of the Cardiovascular System)
Show Figures

Figure 1

14 pages, 1708 KB  
Review
Mrp and SufT, Two Bacterial Homologs of Eukaryotic CIA Factors Involved in Fe-S Clusters Biogenesis
by Corinne Aubert, Pierre Mandin and Béatrice Py
Inorganics 2023, 11(11), 431; https://doi.org/10.3390/inorganics11110431 - 3 Nov 2023
Cited by 9 | Viewed by 2453
Abstract
Fe-S clusters are essential cofactors for the activity of a large variety of metalloproteins that play important roles in respiration, photosynthesis, nitrogen fixation, regulation of gene expression, and numerous metabolic pathways, including biosynthesis of other protein cofactors. Assembly of iron and sulfur atoms [...] Read more.
Fe-S clusters are essential cofactors for the activity of a large variety of metalloproteins that play important roles in respiration, photosynthesis, nitrogen fixation, regulation of gene expression, and numerous metabolic pathways, including biosynthesis of other protein cofactors. Assembly of iron and sulfur atoms into a cluster, followed by its insertion into the polypeptide chain, is a complex process ensured by multiproteic systems. Through evolution, eukaryotes have acquired two Fe-S protein biogenesis systems by endosymbiosis from bacteria. These systems, ISC and SUF, are compartmentalized in mitochondria and plastids, respectively. The eukaryotic Fe-S protein biogenesis system (CIA) is dedicated to the biogenesis of cytosolic and nuclear Fe-S proteins. While the CIA system is absent in bacteria, at least two of its components share homologies with bacterial Fe-S protein biogenesis factors, Mrp and SufT. Here, we provide an overview of the role of Mrp and SufT in Fe-S protein biogenesis in bacteria, aiming to put forward specific but also common features with their eukaryotic CIA counterparts. Full article
(This article belongs to the Special Issue Iron-Sulfur Clusters: Assembly and Biological Roles)
Show Figures

Figure 1

17 pages, 3156 KB  
Article
Understanding the Molecular Basis of the Multiple Mitochondrial Dysfunctions Syndrome 2: The Disease-Causing His96Arg Mutation of BOLA3
by Beatrice Bargagna, Lucia Banci and Francesca Camponeschi
Int. J. Mol. Sci. 2023, 24(14), 11734; https://doi.org/10.3390/ijms241411734 - 21 Jul 2023
Cited by 1 | Viewed by 1893
Abstract
Multiple mitochondrial dysfunctions syndrome type 2 with hyperglycinemia (MMDS2) is a severe disorder of mitochondrial energy metabolism, associated with biallelic mutations in the gene encoding for BOLA3, a protein with a not yet completely understood role in iron-sulfur (Fe-S) cluster biogenesis, but essential [...] Read more.
Multiple mitochondrial dysfunctions syndrome type 2 with hyperglycinemia (MMDS2) is a severe disorder of mitochondrial energy metabolism, associated with biallelic mutations in the gene encoding for BOLA3, a protein with a not yet completely understood role in iron-sulfur (Fe-S) cluster biogenesis, but essential for the maturation of mitochondrial [4Fe-4S] proteins. To better understand the role of BOLA3 in MMDS2, we have investigated the impact of the p.His96Arg (c.287A > G) point mutation, which involves a highly conserved residue, previously identified as a [2Fe-2S] cluster ligand in the BOLA3-[2Fe-2S]-GLRX5 heterocomplex, on the structural and functional properties of BOLA3 protein. The His96Arg mutation has been associated with a severe MMDS2 phenotype, characterized by defects in the activity of mitochondrial respiratory complexes and lipoic acid-dependent enzymes. Size exclusion chromatography, NMR, UV-visible, circular dichroism, and EPR spectroscopy characterization have shown that the His96Arg mutation does not impair the interaction of BOLA3 with its protein partner GLRX5, but leads to the formation of an aberrant BOLA3-[2Fe-2S]-GLRX5 heterocomplex, that is not functional anymore in the assembly of a [4Fe-4S] cluster on NFU1. These results allowed us to rationalize the severe phenotype observed in MMDS2 caused by His96Arg mutation. Full article
(This article belongs to the Special Issue Metal Transport in Cells: Molecular Mechanisms and Functions)
Show Figures

Figure 1

14 pages, 1893 KB  
Article
The Mycobacterium smegmatis HesB Protein, MSMEG_4272, Is Required for In Vitro Growth and Iron Homeostasis
by Nandi Niemand Wolhuter, Lerato Ngakane, Timothy J. de Wet, Robin M. Warren and Monique J. Williams
Microorganisms 2023, 11(6), 1573; https://doi.org/10.3390/microorganisms11061573 - 14 Jun 2023
Viewed by 2428
Abstract
A-type carrier (ATC) proteins are proposed to function in the biogenesis of Fe-S clusters, although their exact role remains controversial. The genome of Mycobacterium smegmatis encodes a single ATC protein, MSMEG_4272, which belongs to the HesB/YadR/YfhF family of proteins. Attempts to generate an [...] Read more.
A-type carrier (ATC) proteins are proposed to function in the biogenesis of Fe-S clusters, although their exact role remains controversial. The genome of Mycobacterium smegmatis encodes a single ATC protein, MSMEG_4272, which belongs to the HesB/YadR/YfhF family of proteins. Attempts to generate an MSMEG_4272 deletion mutant by two-step allelic exchange were unsuccessful, suggesting that the gene is essential for in vitro growth. CRISPRi-mediated transcriptional knock-down of MSMEG_4272 resulted in a growth defect under standard culture conditions, which was exacerbated in mineral-defined media. The knockdown strain displayed reduced intracellular iron levels under iron-replete conditions and increased susceptibility to clofazimine, 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), and isoniazid, while the activity of the Fe-S containing enzymes, succinate dehydrogenase, and aconitase were not affected. This study suggests that MSMEG_4272 plays a role in the regulation of intracellular iron levels and is required for in vitro growth of M. smegmatis, particularly during exponential growth. Full article
Show Figures

Figure 1

29 pages, 4603 KB  
Article
Structural and Biochemical Characterization of Mycobacterium tuberculosis Zinc SufU-SufS Complex
by Ingie Elchennawi, Philippe Carpentier, Christelle Caux, Marine Ponge and Sandrine Ollagnier de Choudens
Biomolecules 2023, 13(5), 732; https://doi.org/10.3390/biom13050732 - 24 Apr 2023
Cited by 13 | Viewed by 5127
Abstract
Iron-sulfur (Fe-S) clusters are inorganic prosthetic groups in proteins composed exclusively of iron and inorganic sulfide. These cofactors are required in a wide range of critical cellular pathways. Iron-sulfur clusters do not form spontaneously in vivo; several proteins are required to mobilize sulfur [...] Read more.
Iron-sulfur (Fe-S) clusters are inorganic prosthetic groups in proteins composed exclusively of iron and inorganic sulfide. These cofactors are required in a wide range of critical cellular pathways. Iron-sulfur clusters do not form spontaneously in vivo; several proteins are required to mobilize sulfur and iron, assemble and traffic-nascent clusters. Bacteria have developed several Fe-S assembly systems, such as the ISC, NIF, and SUF systems. Interestingly, in Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), the SUF machinery is the primary Fe-S biogenesis system. This operon is essential for the viability of Mtb under normal growth conditions, and the genes it contains are known to be vulnerable, revealing the Mtb SUF system as an interesting target in the fight against tuberculosis. In the present study, two proteins of the Mtb SUF system were characterized for the first time: Rv1464(sufS) and Rv1465(sufU). The results presented reveal how these two proteins work together and thus provide insights into Fe-S biogenesis/metabolism by this pathogen. Combining biochemistry and structural approaches, we showed that Rv1464 is a type II cysteine-desulfurase enzyme and that Rv1465 is a zinc-dependent protein interacting with Rv1464. Endowed with a sulfurtransferase activity, Rv1465 significantly enhances the cysteine-desulfurase activity of Rv1464 by transferring the sulfur atom from persulfide on Rv1464 to its conserved Cys40 residue. The zinc ion is important for the sulfur transfer reaction between SufS and SufU, and His354 in SufS plays an essential role in this reaction. Finally, we showed that Mtb SufS-SufU is more resistant to oxidative stress than E. coli SufS-SufE and that the presence of zinc in SufU is likely responsible for this improved resistance. This study on Rv1464 and Rv1465 will help guide the design of future anti-tuberculosis agents. Full article
(This article belongs to the Special Issue Biomolecule-Metal Ion Interaction)
Show Figures

Figure 1

16 pages, 1492 KB  
Review
New Perspectives on BolA: A Still Mysterious Protein Connecting Morphogenesis, Biofilm Production, Virulence, Iron Metabolism, and Stress Survival
by Ana Alves da Silva, Lisete Galego and Cecília Maria Arraiano
Microorganisms 2023, 11(3), 632; https://doi.org/10.3390/microorganisms11030632 - 1 Mar 2023
Cited by 8 | Viewed by 4062
Abstract
The BolA-like protein family is widespread among prokaryotes and eukaryotes. BolA was originally described in E. coli as a gene induced in the stationary phase and in stress conditions. The BolA overexpression makes cells spherical. It was characterized as a transcription factor modulating [...] Read more.
The BolA-like protein family is widespread among prokaryotes and eukaryotes. BolA was originally described in E. coli as a gene induced in the stationary phase and in stress conditions. The BolA overexpression makes cells spherical. It was characterized as a transcription factor modulating cellular processes such as cell permeability, biofilm production, motility, and flagella assembly. BolA is important in the switch between motile and sedentary lifestyles having connections with the signaling molecule c-di-GMP. BolA was considered a virulence factor in pathogens such as Salmonella Typhimurium and Klebsiella pneumoniae and it promotes bacterial survival when facing stresses due to host defenses. In E. coli, the BolA homologue IbaG is associated with resistance to acidic stress, and in Vibrio cholerae, IbaG is important for animal cell colonization. Recently, it was demonstrated that BolA is phosphorylated and this modification is important for the stability/turnover of BolA and its activity as a transcription factor. The results indicate that there is a physical interaction between BolA-like proteins and the CGFS-type Grx proteins during the biogenesis of Fe-S clusters, iron trafficking and storage. We also review recent progress regarding the cellular and molecular mechanisms by which BolA/Grx protein complexes are involved in the regulation of iron homeostasis in eukaryotes and prokaryotes. Full article
(This article belongs to the Special Issue Host–Biofilm Interactions 2.0)
Show Figures

Figure 1

10 pages, 1047 KB  
Article
Essentiality of the Escherichia coli YgfZ Protein for the In Vivo Thiomethylation of Ribosomal Protein S12 by the RimO Enzyme
by Torben Lund, Maria Yohanna Kulkova, Rosa Jersie-Christensen and Tove Atlung
Int. J. Mol. Sci. 2023, 24(5), 4728; https://doi.org/10.3390/ijms24054728 - 1 Mar 2023
Cited by 1 | Viewed by 2926
Abstract
Enzymes carrying Iron-Sulfur (Fe-S) clusters perform many important cellular functions and their biogenesis require complex protein machinery. In mitochondria, the IBA57 protein is essential and promotes assembly of [4Fe-4S] clusters and their insertion into acceptor proteins. YgfZ is the bacterial homologue of IBA57 [...] Read more.
Enzymes carrying Iron-Sulfur (Fe-S) clusters perform many important cellular functions and their biogenesis require complex protein machinery. In mitochondria, the IBA57 protein is essential and promotes assembly of [4Fe-4S] clusters and their insertion into acceptor proteins. YgfZ is the bacterial homologue of IBA57 but its precise role in Fe-S cluster metabolism is uncharacterized. YgfZ is needed for activity of the radical S-adenosyl methionine [4Fe-4S] cluster enzyme MiaB which thiomethylates some tRNAs. The growth of cells lacking YgfZ is compromised especially at low temperature. The RimO enzyme is homologous to MiaB and thiomethylates a conserved aspartic acid in ribosomal protein S12. To quantitate thiomethylation by RimO, we developed a bottom-up LC-MS2 analysis of total cell extracts. We show here that the in vivo activity of RimO is very low in the absence of YgfZ and independent of growth temperature. We discuss these results in relation to the hypotheses relating to the role of the auxiliary 4Fe-4S cluster in the Radical SAM enzymes that make Carbon-Sulfur bonds. Full article
(This article belongs to the Collection Feature Papers in “Molecular Biology”)
Show Figures

Graphical abstract

13 pages, 4786 KB  
Article
Protoporphyrin IX Binds to Iron(II)-Loaded and to Zinc-Loaded Human Frataxin
by Ganeko Bernardo-Seisdedos, Andreas Schedlbauer, Tania Pereira-Ortuzar, José M. Mato and Oscar Millet
Life 2023, 13(1), 222; https://doi.org/10.3390/life13010222 - 12 Jan 2023
Cited by 2 | Viewed by 2970
Abstract
(1) Background: Human frataxin is an iron binding protein that participates in the biogenesis of iron sulfur clusters and enhances ferrochelatase activity. While frataxin association to other proteins has been extensively characterized up to the structural level, much less is known about the [...] Read more.
(1) Background: Human frataxin is an iron binding protein that participates in the biogenesis of iron sulfur clusters and enhances ferrochelatase activity. While frataxin association to other proteins has been extensively characterized up to the structural level, much less is known about the putative capacity of frataxin to interact with functionally related metabolites. In turn, current knowledge about frataxin’s capacity to coordinate metal ions is limited to iron (II and III); (2) Methods: here, we used NMR spectroscopy, Molecular Dynamics, and Docking approaches to demonstrate new roles of frataxin; (3) Results: We demonstrate that frataxin also binds Zn2+ in a structurally similar way to Fe2+, but with lower affinity. In turn, both Fe2+-loaded and Zn2+-loaded frataxins specifically associate to protoporphyrin IX with micromolar affinity, while apo-frataxin does not bind to the porphyrin. Protoporphyrin IX association to metal-loaded frataxin shares the binding epitope with ferrochelatase; and (4) Conclusions: these findings expand the plethora of relevant molecular targets for frataxin and may help to elucidate the yet unknown different roles that this protein exerts in iron regulation and metabolism. Full article
(This article belongs to the Special Issue Heme Metabolism and Porphyria)
Show Figures

Figure 1

28 pages, 4278 KB  
Review
Molecular Basis of Rare Diseases Associated to the Maturation of Mitochondrial [4Fe-4S]-Containing Proteins
by Francesca Camponeschi, Simone Ciofi-Baffoni, Vito Calderone and Lucia Banci
Biomolecules 2022, 12(7), 1009; https://doi.org/10.3390/biom12071009 - 21 Jul 2022
Cited by 23 | Viewed by 3850
Abstract
The importance of mitochondria in mammalian cells is widely known. Several biochemical reactions and pathways take place within mitochondria: among them, there are those involving the biogenesis of the iron–sulfur (Fe-S) clusters. The latter are evolutionarily conserved, ubiquitous inorganic cofactors, performing a variety [...] Read more.
The importance of mitochondria in mammalian cells is widely known. Several biochemical reactions and pathways take place within mitochondria: among them, there are those involving the biogenesis of the iron–sulfur (Fe-S) clusters. The latter are evolutionarily conserved, ubiquitous inorganic cofactors, performing a variety of functions, such as electron transport, enzymatic catalysis, DNA maintenance, and gene expression regulation. The synthesis and distribution of Fe-S clusters are strictly controlled cellular processes that involve several mitochondrial proteins that specifically interact each other to form a complex machinery (Iron Sulfur Cluster assembly machinery, ISC machinery hereafter). This machinery ensures the correct assembly of both [2Fe-2S] and [4Fe-4S] clusters and their insertion in the mitochondrial target proteins. The present review provides a structural and molecular overview of the rare diseases associated with the genes encoding for the accessory proteins of the ISC machinery (i.e., GLRX5, ISCA1, ISCA2, IBA57, FDX2, BOLA3, IND1 and NFU1) involved in the assembly and insertion of [4Fe-4S] clusters in mitochondrial proteins. The disease-related missense mutations were mapped on the 3D structures of these accessory proteins or of their protein complexes, and the possible impact that these mutations have on their specific activity/function in the frame of the mitochondrial [4Fe-4S] protein biogenesis is described. Full article
Show Figures

Figure 1

15 pages, 1601 KB  
Review
Protein Mutations and Stability, a Link with Disease: The Case Study of Frataxin
by Rita Puglisi
Biomedicines 2022, 10(2), 425; https://doi.org/10.3390/biomedicines10020425 - 11 Feb 2022
Cited by 11 | Viewed by 3883
Abstract
Protein mutations may lead to pathologies by causing protein misfunction or propensity to degradation. For this reason, several studies have been performed over the years to determine the capability of proteins to retain their native conformation under stress condition as well as factors [...] Read more.
Protein mutations may lead to pathologies by causing protein misfunction or propensity to degradation. For this reason, several studies have been performed over the years to determine the capability of proteins to retain their native conformation under stress condition as well as factors to explain protein stabilization and the mechanisms behind unfolding. In this review, we explore the paradigmatic example of frataxin, an iron binding protein involved in Fe–S cluster biogenesis, and whose impairment causes a neurodegenerative disease called Friedreich’s Ataxia (FRDA). We summarize what is known about most common point mutations identified so far in heterozygous FRDA patients, their effects on frataxin structure and function and the consequences of its binding with partners. Full article
(This article belongs to the Special Issue Fe-S Proteins in Health and Disease)
Show Figures

Figure 1

22 pages, 3042 KB  
Review
Sulfur Administration in Fe–S Cluster Homeostasis
by Leszek Rydz, Maria Wróbel and Halina Jurkowska
Antioxidants 2021, 10(11), 1738; https://doi.org/10.3390/antiox10111738 - 29 Oct 2021
Cited by 26 | Viewed by 5207
Abstract
Mitochondria are the key organelles of Fe–S cluster synthesis. They contain the enzyme cysteine desulfurase, a scaffold protein, iron and electron donors, and specific chaperons all required for the formation of Fe–S clusters. The newly formed cluster can be utilized by mitochondrial Fe–S [...] Read more.
Mitochondria are the key organelles of Fe–S cluster synthesis. They contain the enzyme cysteine desulfurase, a scaffold protein, iron and electron donors, and specific chaperons all required for the formation of Fe–S clusters. The newly formed cluster can be utilized by mitochondrial Fe–S protein synthesis or undergo further transformation. Mitochondrial Fe–S cluster biogenesis components are required in the cytosolic iron–sulfur cluster assembly machinery for cytosolic and nuclear cluster supplies. Clusters that are the key components of Fe–S proteins are vulnerable and prone to degradation whenever exposed to oxidative stress. However, once degraded, the Fe–S cluster can be resynthesized or repaired. It has been proposed that sulfurtransferases, rhodanese, and 3-mercaptopyruvate sulfurtransferase, responsible for sulfur transfer from donor to nucleophilic acceptor, are involved in the Fe–S cluster formation, maturation, or reconstitution. In the present paper, we attempt to sum up our knowledge on the involvement of sulfurtransferases not only in sulfur administration but also in the Fe–S cluster formation in mammals and yeasts, and on reconstitution-damaged cluster or restoration of enzyme’s attenuated activity. Full article
(This article belongs to the Special Issue Hydrogen Sulfide in Biology)
Show Figures

Figure 1

Back to TopTop