Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Fe(III)Cl tetraphenyl porphyrin complex

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3601 KB  
Article
Fast Removal of Naphthol Blue Black B Dye from Water Using Polyethyleneimine Functionalized Zinc, Iron, and Manganese Porphyrinic Complexes: Structural Characterization, Kinetic, and Isotherms Studies
by Sahar Y. Rajeh, Aljazi Abdullah Alrashidi, Raoudha Soury and Mahjoub Jabli
Polymers 2025, 17(11), 1494; https://doi.org/10.3390/polym17111494 - 28 May 2025
Viewed by 732
Abstract
In the present work, meso-tetrakis(2,4,6-trimethylphenyl) porphyrinato)zinc(II): ([Zn(TMP)] (1), meso-tetrakis-(tetraphenyl)porphyrin iron(III))chloride): [Fe(TPP)Cl] (2), and meso-tetrakis(phenyl)porphyrin manganese(III) chloride): [Mn(TPP)Cl] (3) were synthesized. Then, the three prepared porphyrinic complexes (13) were functionalized with branched polyethyleneimine (PEI). The prepared complexes were thoroughly analyzed [...] Read more.
In the present work, meso-tetrakis(2,4,6-trimethylphenyl) porphyrinato)zinc(II): ([Zn(TMP)] (1), meso-tetrakis-(tetraphenyl)porphyrin iron(III))chloride): [Fe(TPP)Cl] (2), and meso-tetrakis(phenyl)porphyrin manganese(III) chloride): [Mn(TPP)Cl] (3) were synthesized. Then, the three prepared porphyrinic complexes (13) were functionalized with branched polyethyleneimine (PEI). The prepared complexes were thoroughly analyzed using several analytical techniques, including 1H NMR, FT-IR, UV-vis, XRD, XRF, TGA-DTA, SEM, and EDX. The presence of sharp main peaks at 2θ between 10° and 80°, in XRD analysis, for all studied compounds suggested the crystalline nature of the porphyrinic complexes. The morphological properties of the porphyrininc complexes were significantly affected by the chemical modification with polyethyleneimine. EDX result confirmed the complexation of zinc, iron, and manganese metals with the porphyrinic core. The increase in carbon and nitrogen contents after the addition of polyethyleneimine to the complexes (13) was noticeable. After thermal decomposition, the total mass loss was equal to 92.97%, 66.77%, and 26.78% for complexes (1), (2), and (3), respectively. However, for the complex (1)-PEI, complex (2)-PEI, and complex (3)-PEI, the total mass losses were 83.12%, 81.88%, and 35.78%, respectively. The synthetic compounds were additionally utilized for the adsorption of Naphthol blue black B from water. At optimum adsorption conditions (T = 20 °C, time = 60 min, pH = 5), the highest adsorption capacities were 154 mg/g, 139 mg/g, and 119 mg/g for complex (3)-PEI, complex (2)-PEI, and complex (1)-PEI, respectively. The adsorption mechanism followed the pseudo second order, the Freundlich, and the Temkin models. The results indicated that the adsorption process is reliant on chemical interactions. It was also governed by intraparticular diffusion and other kinetic phenomena. Full article
Show Figures

Figure 1

16 pages, 3430 KB  
Article
The Influence of Technological Factors and Polar Molecules on the Structure of Fibrillar Matrices Based on Ultrafine Poly-3-hydroxybutyrate Fibers Obtained via Electrospinning
by Anatoly A. Olkhov, Polina M. Tyubaeva, Yulia N. Zernova, Valery S. Markin, Regina Kosenko, Anna G. Filatova, Kristina G. Gasparyan and Alexey L. Iordanskii
Technologies 2023, 11(5), 118; https://doi.org/10.3390/technologies11050118 - 6 Sep 2023
Cited by 5 | Viewed by 2324
Abstract
The article examines the regularities of structure formation of ultrafine fibers based on poly-3-hydroxybutyrat under the influence of technological (electrical conductivity, viscosity), molecular (molecular weight), and external factors (low-molecular and nanodispersed substances of different chemical natures). Systems with polar substances are characterized by [...] Read more.
The article examines the regularities of structure formation of ultrafine fibers based on poly-3-hydroxybutyrat under the influence of technological (electrical conductivity, viscosity), molecular (molecular weight), and external factors (low-molecular and nanodispersed substances of different chemical natures). Systems with polar substances are characterized by the presence of intermolecular interactions and the formation of a more perfect crystalline fiber structure. Changes in technological and molecular characteristics affect the fiber formation process, resulting in alterations in the morphology of the nonwoven fabric, fiber geometry, and supramolecular fiber structure. Polymer molecular weight, electrical conductivity, and solution viscosity influence fiber formation and fiber diameter. The fiber structure is heterogeneous, consisting of both crystalline and non-equilibrium amorphous phases. This article shows that with an increase in the molecular weight and concentration of the polymer, the diameter of the fiber increases. At the same time, the increase in the productivity of the electrospinning process does not affect the fiber geometry. The chemical structure of the solvent and the concentration of polar substances play a decisive role in the formation of fibers of even geometry. As the polarity of the solvent increases, the intermolecular interaction with the polar groups of poly-3-hydroxybutyrate increases. As a result of this interaction, the crystallites are improved, and the amorphous phase of the polymer is compacted. The action of polar molecules on the polymer is similar to the action of polar nanoparticles. They increase crystallinity via a nucleation mechanism. This is significant in the development of matrix-fibrillar systems for drug delivery, bioactive substances, antiseptics, tissue engineering constructs, tissue engineering scaffolds, artificial biodegradable implants, sorbents, and other applications. Full article
Show Figures

Graphical abstract

Back to TopTop