Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Fascaplysinopsis sp.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3394 KiB  
Review
Recent Advances in the Synthesis of the Marine-Derived Alkaloid Fascaplysin and Its Metabolites Homofascaplysins A–C
by Ramana Reddy Mittapalli and Harshita Kumari
Molecules 2024, 29(7), 1590; https://doi.org/10.3390/molecules29071590 - 2 Apr 2024
Cited by 1 | Viewed by 1787
Abstract
The fascaplysin and homofascaplysin class of marine natural products has a characteristic 12H-pyrido[1,2-a:3,4-b′]diindole pentacyclic structure. Fascaplysin was isolated in 1988 from the marine sponge Fascaplysinopsis bergquist sp. The analogs of fascaplysin, such as homofascaplysins A, B, and C, were discovered late in the [...] Read more.
The fascaplysin and homofascaplysin class of marine natural products has a characteristic 12H-pyrido[1,2-a:3,4-b′]diindole pentacyclic structure. Fascaplysin was isolated in 1988 from the marine sponge Fascaplysinopsis bergquist sp. The analogs of fascaplysin, such as homofascaplysins A, B, and C, were discovered late in the Fijian sponge F. reticulate, and also have potent antimicrobial activity and strong cytotoxicity against L-1210 mouse leukemia. In this review, the total synthesis of fascaplysin and its analogs, such as homofascaplysins A, B, and C, will be reviewed, which will offer useful information for medicinal chemistry researchers who are interested in the exploration of marine alkaloids. Full article
(This article belongs to the Special Issue Synthetic Studies Aimed at Heterocyclic Organic Compounds)
Show Figures

Figure 1

23 pages, 1016 KiB  
Article
Derivatives of Salarin A, Salarin C and Tulearin A—Fascaplysinopsis sp. Metabolites
by Lee Goren Zur, Ashgan Bishara, Maurice Aknin, Drorit Neumann, Nathalie Ben-Califa and Yoel Kashman
Mar. Drugs 2013, 11(11), 4487-4509; https://doi.org/10.3390/md11114487 - 11 Nov 2013
Cited by 7 | Viewed by 8247
Abstract
Derivatives of salarin A, salarin C and tulearin A, three new cytotoxic sponge derived nitrogenous macrolides, were prepared and bio-evaluated as inhibitors of K562 leukemia cells. Interesting preliminary SAR (structure activity relationship) information was obtained from the products. The most sensitive functionalities were [...] Read more.
Derivatives of salarin A, salarin C and tulearin A, three new cytotoxic sponge derived nitrogenous macrolides, were prepared and bio-evaluated as inhibitors of K562 leukemia cells. Interesting preliminary SAR (structure activity relationship) information was obtained from the products. The most sensitive functionalities were the 16,17-vinyl epoxide in both salarins, the triacylamino group in salarin A and the oxazole in salarin C (less sensitive). Regioselectivity of reactions was also found for tulearin A. Full article
Show Figures

Graphical abstract

15 pages, 357 KiB  
Article
Sterols from the Madagascar Sponge Fascaplysinopsis sp.
by Maurice Aknin, Emmanuelle Gros, Jean Vacelet, Yoel Kashman and Anne Gauvin-Bialecki
Mar. Drugs 2010, 8(12), 2961-2975; https://doi.org/10.3390/md8122961 - 17 Dec 2010
Cited by 13 | Viewed by 11090
Abstract
The sponge Fascaplysinopsis sp. (order Dictyoceratida, Family Thorectidae) from the west coast of Madagascar (Indian Ocean) is a particularly rich source of bioactive nitrogenous macrolides. The previous studies on this organism led to the suggestion that the latter should originate from associated microsymbionts. [...] Read more.
The sponge Fascaplysinopsis sp. (order Dictyoceratida, Family Thorectidae) from the west coast of Madagascar (Indian Ocean) is a particularly rich source of bioactive nitrogenous macrolides. The previous studies on this organism led to the suggestion that the latter should originate from associated microsymbionts. In order to evaluate the influence of microsymbionts on lipid content, 10 samples of Fascaplysinopsis sp. were investigated for their sterol composition. Contrary to the secondary metabolites, the sterol patterns established were qualitatively and quantitatively stable: 14 sterols with different unsaturated nuclei, D5, D7 and D5,7, were identified; the last ones being the main sterols of the investigated sponges. The chemotaxonomic significance of these results for the order Dictyoceratida is also discussed in the context of the literature. The conjugated diene system in D5,7 sterols is known to be unstable and easily photo-oxidized during storage and/or experiments to produce 5a,8a-epidioxy sterols. However, in this study, no 5a,8a-epidioxysterols (or only trace amounts) were observed. Thus, it was supposed that photo-oxidation was avoided thanks to the natural antioxidants detected in Fascaplysinopsis sp. by both the DPPH and b-caroten bleaching assays. Full article
(This article belongs to the Special Issue Marine Lipids)
Show Figures

27 pages, 1705 KiB  
Review
Recent N-Atom Containing Compounds from Indo-Pacific Invertebrates
by Yoel Kashman, Ashgan Bishara and Maurice Aknin
Mar. Drugs 2010, 8(11), 2810-2836; https://doi.org/10.3390/md8112810 - 10 Nov 2010
Cited by 10 | Viewed by 8977
Abstract
A large variety of unique N-atom containing compounds (alkaloids) without terrestrial counterparts, have been isolated from marine invertebrates, mainly sponges and ascidians. Many of these compounds display interesting biological activities. In this report we present studies on nitrogenous compounds, isolated by our [...] Read more.
A large variety of unique N-atom containing compounds (alkaloids) without terrestrial counterparts, have been isolated from marine invertebrates, mainly sponges and ascidians. Many of these compounds display interesting biological activities. In this report we present studies on nitrogenous compounds, isolated by our group during the last few years, from Indo-Pacific sponges, one ascidian and one gorgonian. The major part of the review deals with metabolites from the Madagascar sponge Fascaplysinopsis sp., namely, four groups of secondary metabolites, the salarins, tulearins, taumycins and tausalarins. Full article
(This article belongs to the Special Issue Marine Alkaloids)
Show Figures

Back to TopTop