Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = FAB subtypes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4142 KB  
Article
Acute Myeloid Leukemia Genome Characterization Study and Subtype Classification Employing Feature Selection and Bayesian Networks
by Zhenzhen Li, Jingwen Li, Sifan Li, Yangyang Wang and Jihan Wang
Biomedicines 2025, 13(5), 1067; https://doi.org/10.3390/biomedicines13051067 - 28 Apr 2025
Viewed by 2002
Abstract
Background: The precise diagnosis and classification of acute myeloid leukemia (AML) has important implications for clinical management and medical research. Methods: We investigated the expression of protein-coding genes in blood samples from AML patients and controls using The Cancer Genome Atlas (TCGA) and [...] Read more.
Background: The precise diagnosis and classification of acute myeloid leukemia (AML) has important implications for clinical management and medical research. Methods: We investigated the expression of protein-coding genes in blood samples from AML patients and controls using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. Subsequently, we applied the feature selection method of the least absolute shrinkage and selection operator (LASSO) to select the optimal gene subset for classifying AML patients and controls as well as between a particular FAB subtype and other subtypes of AML. Results: Using LASSO method, we identified a subset of 101 genes that could effectively distinguish between AML patients and control individuals; these genes included 70 up-regulated and 31 down-regulated genes in AML. Functional annotation and pathway analysis indicated the involvement of these genes in RNA-related pathways, which was also consistent with the epigenetic changes observed in AML. Results from survival analysis revealed that several genes are correlated with the overall survival in AML patients. Additionally, LASSO-based gene subset analysis successfully revealed differences between certain AML subtypes, providing valuable insights into subtype-specific molecular mechanisms and differentiation therapy. Conclusions: This study demonstrated the application of machine learning in genomic data analysis for identifying gene subsets relevant to AML diagnosis and classification, which could aid in improving the understanding of the molecular landscape of AML. The identification of survival-related genes and subtype-specific markers may lead to the identification of novel targets for personalized medicine in the treatment of AML. Full article
Show Figures

Figure 1

11 pages, 811 KB  
Article
The Effects of Multidisciplinary Intensive Rehabilitation on Cognitive and Executive Functions in Parkinson’s Disease: A Clinical Database Analysis
by Ivana Baldassarre, Rossella Rotondo, Laura Piccardi, Lorenza Leonardi, Danilo Lanni, Maria Gaglione, Fabrizio Stocchi, Massimo Fini, Michela Goffredo, Elvira Padua and Maria Francesca De Pandis
J. Clin. Med. 2024, 13(13), 3884; https://doi.org/10.3390/jcm13133884 - 2 Jul 2024
Cited by 3 | Viewed by 3059
Abstract
Background/Objectives: This study is based on data collected from a medical health record review to assess whether multidisciplinary intensive rehabilitation treatment in Parkinson’s disease (PD) patients can improve global cognitive functioning and executive functions. Methods: The data related to PD patients were [...] Read more.
Background/Objectives: This study is based on data collected from a medical health record review to assess whether multidisciplinary intensive rehabilitation treatment in Parkinson’s disease (PD) patients can improve global cognitive functioning and executive functions. Methods: The data related to PD patients were extrapolated from a clinical database called “NeuroRehab”. A total of 104 PD patients (51 males; 53 females) performed 6 weeks of multidisciplinary intensive rehabilitation treatment in clinical practice from January 2019 to May 2023. This training program was characterized by three daily sessions of 60 min of activities (muscle relaxation and stretching exercises, moderate physical aerobic exercise, and occupational therapy). The patients were classified and stratified according to disease severity (according to the Hoehn and Yahr scale), postural instability and gait difficulty (PIGD) or tremor-dominant (TD) subtypes, disease duration (DD), and the presence of dyskinesias. The effect of multidisciplinary intensive rehabilitation treatment on cognitive and executive functions was evaluated through the administration of cognitive tests, such as the Mini–Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), and Frontal Assessment Battery (FAB). All the parameters were evaluated at the baseline (T0) and at the end of the rehabilitation program (T1). Results: The multidisciplinary intensive rehabilitation treatment significantly improved cognitive performance. The MMSE, MoCA, and FAB test scores after the rehabilitation program (T1) were significantly higher compared to the scores obtained at the baseline (T0). Moreover, further analyses on subgroups of the patients who scored below the cut-off in the MMSE showed that at least 50% of patients overcame the cut-off score. Interestingly, the same analyses performed for the MoCA and FAB revealed a higher rate of improvement in cognitive functions, with normal scores in both tests after 6 weeks of multidisciplinary intensive rehabilitation treatment. Conclusions: This study revealed the potential effects of a 6-week multidisciplinary rehabilitation program in improving cognitive status in a PD inpatient cohort. Full article
(This article belongs to the Special Issue Non-Motor Symptoms in Movement Disorders)
Show Figures

Figure 1

23 pages, 2814 KB  
Article
Monocytic Differentiation of Human Acute Myeloid Leukemia Cells: A Proteomic and Phosphoproteomic Comparison of FAB-M4/M5 Patients with and without Nucleophosmin 1 Mutations
by Frode Selheim, Elise Aasebø, Håkon Reikvam, Øystein Bruserud and Maria Hernandez-Valladares
Int. J. Mol. Sci. 2024, 25(10), 5080; https://doi.org/10.3390/ijms25105080 - 7 May 2024
Cited by 3 | Viewed by 3317
Abstract
Even though morphological signs of differentiation have a minimal impact on survival after intensive cytotoxic therapy for acute myeloid leukemia (AML), monocytic AML cell differentiation (i.e., classified as French/American/British (FAB) subtypes M4/M5) is associated with a different responsiveness both to Bcl-2 inhibition (decreased [...] Read more.
Even though morphological signs of differentiation have a minimal impact on survival after intensive cytotoxic therapy for acute myeloid leukemia (AML), monocytic AML cell differentiation (i.e., classified as French/American/British (FAB) subtypes M4/M5) is associated with a different responsiveness both to Bcl-2 inhibition (decreased responsiveness) and possibly also bromodomain inhibition (increased responsiveness). FAB-M4/M5 patients are heterogeneous with regard to genetic abnormalities, even though monocytic differentiation is common for patients with Nucleophosmin 1 (NPM1) insertions/mutations; to further study the heterogeneity of FAB-M4/M5 patients we did a proteomic and phosphoproteomic comparison of FAB-M4/M5 patients with (n = 13) and without (n = 12) NPM1 mutations. The proteomic profile of NPM1-mutated FAB-M4/M5 patients was characterized by increased levels of proteins involved in the regulation of endocytosis/vesicle trafficking/organellar communication. In contrast, AML cells without NPM1 mutations were characterized by increased levels of several proteins involved in the regulation of cytoplasmic translation, including a large number of ribosomal proteins. The phosphoproteomic differences between the two groups were less extensive but reflected similar differences. To conclude, even though FAB classification/monocytic differentiation are associated with differences in responsiveness to new targeted therapies (e.g., Bcl-2 inhibition), our results shows that FAB-M4/M5 patients are heterogeneous with regard to important biological characteristics of the leukemic cells. Full article
(This article belongs to the Special Issue Proteomics and Its Applications in Disease: 2nd Edition)
Show Figures

Figure 1

24 pages, 5297 KB  
Article
High Mitochondrial Protein Expression as a Potential Predictor of Relapse Risk in Acute Myeloid Leukemia Patients with the Monocytic FAB Subtypes M4 and M5
by Frode Selheim, Elise Aasebø, Øystein Bruserud and Maria Hernandez-Valladares
Cancers 2024, 16(1), 8; https://doi.org/10.3390/cancers16010008 - 19 Dec 2023
Cited by 7 | Viewed by 3225
Abstract
AML is a highly aggressive and heterogeneous form of hematological cancer. Proteomics-based stratification of patients into more refined subgroups may contribute to a more precise characterization of the patient-derived AML cells. Here, we reanalyzed liquid chromatography-tandem mass spectrometry (LC-MS/MS) generated proteomic and phosphoproteomic [...] Read more.
AML is a highly aggressive and heterogeneous form of hematological cancer. Proteomics-based stratification of patients into more refined subgroups may contribute to a more precise characterization of the patient-derived AML cells. Here, we reanalyzed liquid chromatography-tandem mass spectrometry (LC-MS/MS) generated proteomic and phosphoproteomic data from 26 FAB-M4/M5 patients. The patients achieved complete hematological remission after induction therapy. Twelve of them later developed chemoresistant relapse (RELAPSE), and 14 patients were relapse-free (REL_FREE) long-term survivors. We considered not only the RELAPSE and REL_FREE characteristics but also integrated the French-American-British (FAB) classification, along with considering the presence of nucleophosmin 1 (NPM1) mutation and cytogenetically normal AML. We found a significant number of differentially enriched proteins (911) and phosphoproteins (257) between the various FAB subtypes in RELAPSE patients. Patients with the myeloblastic M1/M2 subtype showed higher levels of RNA processing-related routes and lower levels of signaling related to terms like translation and degranulation when compared with the M4/M5 subtype. Moreover, we found that a high abundance of proteins associated with mitochondrial translation and oxidative phosphorylation, particularly observed in the RELAPSE M4/M5 NPM1 mutated subgroup, distinguishes relapsing from non-relapsing AML patient cells with the FAB subtype M4/M5. Thus, the discovery of subtype-specific biomarkers through proteomic profiling may complement the existing classification system for AML and potentially aid in selecting personalized treatment strategies for individual patients. Full article
(This article belongs to the Special Issue Novel Insights in Acute Lymphoblastic and Myeloblastic Leukemia)
Show Figures

Figure 1

15 pages, 2466 KB  
Article
Targeting NKG2DL with Bispecific NKG2D–CD16 and NKG2D–CD3 Fusion Proteins on Triple–Negative Breast Cancer
by Polina Kaidun, Samuel J. Holzmayer, Sarah M. Greiner, Anna Seller, Christian M. Tegeler, Ilona Hagelstein, Jonas Mauermann, Tobias Engler, André Koch, Andreas D. Hartkopf, Helmut R. Salih and Melanie Märklin
Int. J. Mol. Sci. 2023, 24(17), 13156; https://doi.org/10.3390/ijms241713156 - 24 Aug 2023
Cited by 6 | Viewed by 3724
Abstract
Triple–negative breast cancer (TNBC) is a particularly aggressive subtype of breast cancer with a poor response rate to conventional systemic treatment and high relapse rates. Members of the natural killer group 2D ligand (NKG2DL) family are expressed on cancer cells but are typically [...] Read more.
Triple–negative breast cancer (TNBC) is a particularly aggressive subtype of breast cancer with a poor response rate to conventional systemic treatment and high relapse rates. Members of the natural killer group 2D ligand (NKG2DL) family are expressed on cancer cells but are typically absent from healthy tissues; thus, they are promising tumor antigens for novel immunotherapeutic approaches. We developed bispecific fusion proteins (BFPs) consisting of the NKG2D receptor domain targeting multiple NKG2DLs, fused to either anti–CD3 (NKG2D–CD3) or anti–CD16 (NKG2D–CD16) Fab fragments. First, we characterized the expression of the NKG2DLs (MICA, MICB, ULBP1–4) on TNBC cell lines and observed the highest surface expression for MICA and ULBP2. Targeting TNBC cells with NKG2D–CD3/CD16 efficiently activated both NK and T cells, leading to their degranulation and cytokine release and lysis of TNBC cells. Furthermore, PBMCs from TNBC patients currently undergoing chemotherapy showed significantly higher NK and T cell activation and tumor cell lysis when stimulated with NKG2D–CD3/CD16. In conclusions, BFPs activate and direct the NK and T cells of healthy and TNBC patients against TNBC cells, leading to efficient eradication of tumor cells. Therefore, NKG2D–based NK and T cell engagers could be a valuable addition to the treatment options for TNBC patients. Full article
(This article belongs to the Special Issue Molecular Research and Treatment of Breast Cancer 2.0)
Show Figures

Figure 1

34 pages, 1997 KB  
Review
Choosing the Right Cell Line for Acute Myeloid Leukemia (AML) Research
by Rafał Skopek, Małgorzata Palusińska, Katarzyna Kaczor-Keller, Rafał Pingwara, Anna Papierniak-Wyglądała, Tino Schenk, Sławomir Lewicki, Artur Zelent and Łukasz Szymański
Int. J. Mol. Sci. 2023, 24(6), 5377; https://doi.org/10.3390/ijms24065377 - 11 Mar 2023
Cited by 42 | Viewed by 18479
Abstract
Immortalized cell lines are widely used in vitro tools in oncology and hematology research. While these cell lines represent artificial systems and may accumulate genetic aberrations with each passage, they are still considered valuable models for pilot, preliminary, and screening studies. Despite their [...] Read more.
Immortalized cell lines are widely used in vitro tools in oncology and hematology research. While these cell lines represent artificial systems and may accumulate genetic aberrations with each passage, they are still considered valuable models for pilot, preliminary, and screening studies. Despite their limitations, cell lines are cost-effective and provide repeatable and comparable results. Choosing the appropriate cell line for acute myeloid leukemia (AML) research is crucial for obtaining reliable and relevant results. Several factors should be considered when selecting a cell line for AML research, such as specific markers and genetic abnormalities associated with different subtypes of AML. It is also essential to evaluate the karyotype and mutational profile of the cell line, as these can influence the behavior and response to the treatment of the cells. In this review, we evaluate immortalized AML cell lines and discuss the issues surrounding them concerning the revised World Health Organization and the French–American–British classifications. Full article
(This article belongs to the Special Issue Advanced Research in Acute Myeloid Leukemia)
Show Figures

Figure 1

25 pages, 1161 KB  
Review
Straight to the Point—The Novel Strategies to Cure Pediatric AML
by Monika Lejman, Izabela Dziatkiewicz and Mateusz Jurek
Int. J. Mol. Sci. 2022, 23(4), 1968; https://doi.org/10.3390/ijms23041968 - 10 Feb 2022
Cited by 14 | Viewed by 4513
Abstract
Although the outcome has improved over the past decades, due to improved supportive care, a better understanding of risk factors, and intensified chemotherapy, pediatric acute myeloid leukemia remains a life-threatening disease, and overall survival (OS) remains near 70%. According to French-American-British (FAB) classification, [...] Read more.
Although the outcome has improved over the past decades, due to improved supportive care, a better understanding of risk factors, and intensified chemotherapy, pediatric acute myeloid leukemia remains a life-threatening disease, and overall survival (OS) remains near 70%. According to French-American-British (FAB) classification, AML is divided into eight subtypes (M0–M7), and each is characterized by a different pathogenesis and response to treatment. However, the curability of AML is due to the intensification of standard chemotherapy, more precise risk classification, improvements in supportive care, and the use of minimal residual disease to monitor response to therapy. The treatment of childhood AML continues to be based primarily on intensive, conventional chemotherapy. Therefore, it is essential to identify new, more precise molecules that are targeted to the specific abnormalities of each leukemia subtype. Here, we review abnormalities that are potential therapeutic targets for the treatment of AML in the pediatric population. Full article
(This article belongs to the Special Issue Translational Research on Leukemia)
Show Figures

Figure 1

9 pages, 1207 KB  
Article
Laboratory Investigation of Hybrid IgG4 k/λ in MuSK Positive Myasthenia Gravis
by Umberto Basile, Cecilia Napodano, Francesca Gulli, Krizia Pocino, Riccardo Di Santo, Laura Todi, Valerio Basile, Carlo Provenzano, Gabriele Ciasca and Mariapaola Marino
Int. J. Mol. Sci. 2021, 22(17), 9142; https://doi.org/10.3390/ijms22179142 - 24 Aug 2021
Cited by 5 | Viewed by 2851
Abstract
Myasthenia gravis with antibodies (Abs) against the muscle-specific tyrosine kinase (MuSK) is a rare autoimmune disorder (AD) of the neuromuscular junction (NMJ) and represents a prototype of AD with proven IgG4-mediated pathogenicity. Thanks to the mechanism of Fab-arm exchange (FAE) occurring in vivo, [...] Read more.
Myasthenia gravis with antibodies (Abs) against the muscle-specific tyrosine kinase (MuSK) is a rare autoimmune disorder (AD) of the neuromuscular junction (NMJ) and represents a prototype of AD with proven IgG4-mediated pathogenicity. Thanks to the mechanism of Fab-arm exchange (FAE) occurring in vivo, resulting MuSK IgG4 k/λ Abs increase their interference on NMJ and pathogenicity. The characterization of hybrid MuSK IgG4 as a biomarker for MG management is poorly investigated. Here, we evaluated total IgG4, hybrid IgG4 k/λ, and the hybrid/total ratio in 14 MuSK-MG sera in comparison with 24 from MG with Abs against acetylcholine receptor (AChR) that represents the not IgG4-mediated MG form. In both subtypes of MG, we found that the hybrid/total ratio reflects distribution reported in normal individuals; instead, when we correlated the hybrid/total ratio with specific immune-reactivity we found a positive correlation only with anti-MuSK titer, with a progressive increase of hybrid/total mean values with increasing disease severity, indirectly confirming that most part of hybrid IgG4 molecules are engaged in the anti-MuSK pathogenetic immune-reactivity. Further analysis is necessary to strengthen the significance of this less unknown biomarker, but we retain it is full of a diagnostic-prognostic powerful potential for the management of MuSK-MG. Full article
(This article belongs to the Special Issue Biomarkers in Rare Diseases 2.0)
Show Figures

Figure 1

15 pages, 1518 KB  
Review
The Role of IgG4 in the Fine Tuning of Tolerance in IgE-Mediated Allergy and Cancer
by Rodolfo Bianchini, Sophia N. Karagiannis, Galateja Jordakieva and Erika Jensen-Jarolim
Int. J. Mol. Sci. 2020, 21(14), 5017; https://doi.org/10.3390/ijms21145017 - 16 Jul 2020
Cited by 58 | Viewed by 12652
Abstract
Among the four immunoglobulin G (IgG) subclasses, IgG4 is the least represented in serum of a healthy human and it is considered an “odd” antibody. The IgG4 antibody has unique structural features that affect its biological function. These include the ability to undergo [...] Read more.
Among the four immunoglobulin G (IgG) subclasses, IgG4 is the least represented in serum of a healthy human and it is considered an “odd” antibody. The IgG4 antibody has unique structural features that affect its biological function. These include the ability to undergo antigen-binding fragment (Fab)-arm exchange, to create fragment crystallizable (Fc) – Fc binding with other IgG4 and other IgG subclass antibodies, have a unique affinity profile for Fc gamma receptors (FcγRs) and no binding to complement component C1q. Altogether, these characteristics support anti-inflammatory roles of IgG4 leading to immune tolerance. Under conditions of chronic antigenic stimulation and Th2-type inflammation, both tissue and serum IgG4 levels are increased. This review seeks to highlight how in allergen immunotherapy IgG4 can confer a protective role as a “blocking” antibody and safeguard from subsequent allergen exposure, while IgG4 can confer immunomodulatory functions to support malignancy. While Th2 conditions drive polarization of macrophages to the M2a subtype, chronic antigen stimulation drives B cell class switching to IgG4 to further support phenotypical macrophage changes towards an M2b-like state. M2b-like macrophages can secrete chemokine (C-C motif) ligand 1 (CCL1) and interleukin-10 (IL-10) to support regulatory cell recruitment and to further shape a tolerogenic microenvironment. Thereby, IgG4 have a Janus-faced role, favorable in allergy but detrimental in cancer. Full article
(This article belongs to the Special Issue Immunoglobulins in Inflammation)
Show Figures

Graphical abstract

Back to TopTop