Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = F. venenatum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3710 KiB  
Article
Characterization of Fusarium venenatum Mycoprotein-Based Harbin Red Sausages
by Xue-Li Li, Xian-Ni Qi, Jia-Chen Deng, Ping Jiang, Shu-Yuan Wang, Xing-Li Xue, Qin-Hong Wang and Xiaoqing Ren
Foods 2025, 14(4), 556; https://doi.org/10.3390/foods14040556 - 7 Feb 2025
Viewed by 1329
Abstract
Fusarium venenatum mycoprotein is an alternative, nutritious protein source with a meat-like texture. Here, F. venenatum mycoprotein-based Harbin red sausage was developed and characterized. The study focused on the effect of mycoprotein on the quality of red sausages, which were evaluated in five [...] Read more.
Fusarium venenatum mycoprotein is an alternative, nutritious protein source with a meat-like texture. Here, F. venenatum mycoprotein-based Harbin red sausage was developed and characterized. The study focused on the effect of mycoprotein on the quality of red sausages, which were evaluated in five groups of red sausages based on nutrient content, differential scanning calorimetry (DSC), and gas chromatography–ion mobility spectrometry (GC-IMS). The results showed that increasing the component of mycoprotein in red sausage increased the protein and volatile organic compound content but decreased the water and ash content. There was no significant difference (p > 0.05) between red sausage with 25% added mycoprotein and traditional red sausage in terms of redness and thawed water component, but the protein component was higher, the flavor substances were slightly richer, and the consumer preference was higher. These results suggest that moderate amounts of mycoprotein can improve nutritional value and maintain sensory quality, but that higher levels of substitution can adversely affect preference. This study highlights the potential of mycoprotein as an artificial meat that can strike a balance between improved nutritional value and sensory acceptability. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

26 pages, 8285 KiB  
Article
Image Analysis and Untargeted Metabolomics Reveal Potential Phytotoxins from Fusarium venenatum Against Major Parasitic Weed Phelipanche ramosa (L.) Pomel
by Ana Bendejacq-Seychelles, Lisa Martinez, Anaïs Corréard, Jean Chrisologue Totozafy, Christian Steinberg, Jean-Bernard Pouvreau, Carole Reibel, Grégory Mouille, Samuel Mondy, Lucie Poulin and Stéphanie Gibot-Leclerc
Toxins 2024, 16(12), 531; https://doi.org/10.3390/toxins16120531 - 10 Dec 2024
Viewed by 1521
Abstract
Branched broomrape (Phelipanche ramosa (L.) Pomel), an obligate parasitic weed with a wide host range, is known for its devasting effects on many crops worldwide. Soil fungi, notably Fusarium sp., are described as pathogenic to broomrape, while the hypothesis of the phytotoxicity [...] Read more.
Branched broomrape (Phelipanche ramosa (L.) Pomel), an obligate parasitic weed with a wide host range, is known for its devasting effects on many crops worldwide. Soil fungi, notably Fusarium sp., are described as pathogenic to broomrape, while the hypothesis of the phytotoxicity of fusaric acid produced by F. verticillioides for parasitic weeds of the genus Orobanche has been proposed. Using image analysis and untargeted metabolomics, this study investigated fungal metabolites phytotoxic for P. ramosa and produced by the F. venenatum MIAE02836 strain, isolated from symptomatic broomrapes and identified as a promising candidate for broomrape biocontrol. Phytotoxicity tests of crude extracts from the fungus alone or in interaction with broomrape on P. ramosa microcalli and quantification of necrosis by image analysis confirmed the phytotoxic potential of F. venenatum MIAE02836 metabolites towards the early developmental stages of P. ramosa. Data analysis of a non-targeted metabolomics approach revealed numerous metabolites produced by F. venenatum MIAE02836. Four of them, accumulated during interaction with the parasitic plant, are known for their phytotoxic potential: maculosin, cyclo(Leu-Phe), phenylalanyl-D-histidine and anguidine. These results suggest that combining image acquisition of the microcalli screening test and untargeted metabolomic approach is an interesting and relevant method to characterize phytotoxic fungal metabolites. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Figure 1

20 pages, 6705 KiB  
Article
Identification and Pathogenicity of Fusarium Fungi Associated with Dry Rot of Potato Tubers
by Olga Gavrilova, Aleksandra Orina, Ilya Trubin and Tatiana Gagkaeva
Microorganisms 2024, 12(3), 598; https://doi.org/10.3390/microorganisms12030598 - 16 Mar 2024
Cited by 8 | Viewed by 2762
Abstract
Dry rot of potato tubers is a harmful disease caused by species of the Fusarium genus. Studies on the composition and features of Fusarium spp. that cause the disease in Russia are limited. Thirty-one Fusarium strains belonging to the F. sambucinum species complex [...] Read more.
Dry rot of potato tubers is a harmful disease caused by species of the Fusarium genus. Studies on the composition and features of Fusarium spp. that cause the disease in Russia are limited. Thirty-one Fusarium strains belonging to the F. sambucinum species complex (FSAMSC) and F. solani species complex (FSSC) were accurately identified using multilocus phylogenetic analysis of the tef and rpb2 loci, and their physiological characteristics were studied in detail. As a result, 21 strains of F. sambucinum s. str. and 1 strain of F. venenatum within the FSAMSC were identified. Among the analyzed strains within the FSSC, one strain of F. mori, four strains of F. noneumartii, and two strains of both F. stercicola and F. vanettenii species were identified. This is the first record of F. mori on potato as a novel host plant, and the first detection of F. noneumartii and F. stercicola species in Russia. The clear optimal temperature for the growth of the strains belonging to FSAMSC was noted to be 25 °C, with a growth rate of 11.6–15.0 mm/day, whereas, for the strains belonging to FSSC, the optimal temperature range was between 25 and 30 °C, with a growth rate of 5.5–14.1 mm/day. The distinctive ability of F. sambucinum strains to grow at 5 °C has been demonstrated. All analyzed Fusarium strains were pathogenic to potato cv. Gala and caused extensive damage of the tuber tissue at an incubation temperature of 23 °C for one month. Among the fungi belonging to the FSAMSC, the F. sambucinum strains were more aggressive and caused 23.9 ± 2.2 mm of necrosis in the tubers on average compared to the F. venenatum strain—17.7 ± 1.2 mm. Among the fungi belonging to the FSSC, the F. noneumartii strains were the most aggressive and caused 32.2 ± 0.8 mm of necrosis on average. The aggressiveness of the F. mori, F. stercicola, and especially the F. vanettenii strains was significantly lower: the average sizes of damage were 17.5 ± 0.5 mm, 17.2 ± 0.2 mm, and 12.5 ± 1.7 mm, respectively. At an incubation temperature of 5 °C, only the F. sambucinum strains caused tuber necroses in the range of 6.7 ± 0.5–15.9 ± 0.8 mm. Full article
(This article belongs to the Special Issue Molecular Identification and Phylogeny of Crops Pathogenic Fungi)
Show Figures

Figure 1

11 pages, 3645 KiB  
Article
Establishment of High-Efficiency Screening System for Gene Deletion in Fusarium venenatum TB01
by Sheng Tong, Kexin An, Wenyuan Zhou, Wuxi Chen, Yuanxia Sun, Qinhong Wang and Demao Li
J. Fungi 2022, 8(2), 169; https://doi.org/10.3390/jof8020169 - 10 Feb 2022
Cited by 13 | Viewed by 4013
Abstract
Genetic engineering is one of the most effective methods to obtain fungus strains with desirable traits. However, in some filamentous fungi, targeted gene deletion transformant screening on primary transformation plates is time-consuming and laborious due to a relatively low rate of homologous recombination. [...] Read more.
Genetic engineering is one of the most effective methods to obtain fungus strains with desirable traits. However, in some filamentous fungi, targeted gene deletion transformant screening on primary transformation plates is time-consuming and laborious due to a relatively low rate of homologous recombination. A strategy that compensates for the low recombination rate by improving screening efficiency was performed in F. venenatum TB01. In this study, the visualized gene deletion system that could easily distinguish the fluorescent randomly inserted and nonfluorescent putative deletion transformants using green fluorescence protein (GFP) as the marker and a hand-held lamp as the tool was developed. Compared to direct polymerase chain reaction (PCR) screening, the screening efficiency of gene deletion transformants in this system was increased approximately fourfold. The visualized gene deletion system developed here provides a viable method with convenience, high efficiency, and low cost for reaping gene deletion transformants from species with low recombination rates. Full article
Show Figures

Figure 1

Back to TopTop