Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = European spongy moth

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 779 KiB  
Article
Exploring Opportunities and Challenges: SWOT Analysis for Advancing Smart Tech Solutions in Managing Lymantria dispar dispar Infestations in Forests of the European Union
by Sotirios J. Trigkas, Nikoleta Eleftheriadou, Maria C. Boukouvala, Anna Skourti, Maria Koukouli and Nickolas G. Kavallieratos
Forests 2024, 15(10), 1805; https://doi.org/10.3390/f15101805 - 15 Oct 2024
Viewed by 1520
Abstract
The European spongy moth, Lymantria dispar dispar (L.) (Lepidoptera: Erebidae), originating from Eurasia, is found in Europe, Africa, and North America. Its polyphagous larvae infest deciduous and coniferous trees, causing severe damage during mass outbreak years. Thus, it is listed as one of [...] Read more.
The European spongy moth, Lymantria dispar dispar (L.) (Lepidoptera: Erebidae), originating from Eurasia, is found in Europe, Africa, and North America. Its polyphagous larvae infest deciduous and coniferous trees, causing severe damage during mass outbreak years. Thus, it is listed as one of the top 100 invasive alien species worldwide. The management and containment of this pest vary significantly between Europe and North America, with North America exhibiting a more robust response regarding the containment of the outbreaks. This study evaluates the current state of the European Union (EU-27) forests’ legal, political and cooperative protection frameworks concerning L. dispar dispar. We identified active and potential new stakeholders to assess the level of national and international collaboration in forest protection. We conducted a SWOT analysis to propose new strategies and solutions, aiming for enhanced cooperation in protecting EU forests from L. dispar dispar outbreaks. Our findings highlight the potential of new monitoring and reporting technologies and the importance of increased social and political awareness through social media and public campaigns. These measures would enable more centralized and coordinated efforts among member states. A few of the most significant results in each category of SWOT analysis are as follows: for strengths, a well-established network of EU and national stakeholders exists; for opportunities, emerging innovative technologies, such as IoT, AI, and 5G, are transforming our approach to forest protection; for weaknesses, there is a lack of informed choices regarding proactive measures to contain the outbreak due to a lack of centralized EU coordination and the inefficiencies of national state policies. Finally, the numerous threats to the well-being of EU forests competing for the attention of institutions and relevant stakeholders is by far one of the most important parameters regarding the threats to the EU’s forest protection. The study advocates for a unified, technologically advanced approach to manage and mitigate L. dispar dispar impacts in European forests, emphasizing the need for strengthened international cooperation and the strategic implementation of innovative solutions. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
18 pages, 2592 KiB  
Article
Biochemical Responses in Populus tremula: Defending against Sucking and Leaf-Chewing Insect Herbivores
by Filip Pastierovič, Alina Kalyniukova, Jaromír Hradecký, Ondřej Dvořák, Jan Vítámvás, Kanakachari Mogilicherla and Ivana Tomášková
Plants 2024, 13(9), 1243; https://doi.org/10.3390/plants13091243 - 30 Apr 2024
Cited by 4 | Viewed by 1994
Abstract
The main biochemical traits were estimated in poplar leaves under biotic attack (aphids and spongy moth infestation). Changes in the abundance of bioactive compounds in genetically uniform individuals of European aspen (Populus tremula), such as proline, polyphenolic compounds, chlorophylls a and [...] Read more.
The main biochemical traits were estimated in poplar leaves under biotic attack (aphids and spongy moth infestation). Changes in the abundance of bioactive compounds in genetically uniform individuals of European aspen (Populus tremula), such as proline, polyphenolic compounds, chlorophylls a and b, and volatile compounds, were determined between leaves damaged by sucking insects (aphid—Chaitophorus nassonowi) and chewing insects (spongy moth—Lymantria dispar) compared to uninfected leaves. Among the nine analyzed phenolic compounds, only catechin and procyanidin showed significant differences between the control leaves and leaves affected by spongy moths or aphids. GC-TOF-MS volatile metabolome analysis showed the clear separation of the control versus aphids-infested and moth-infested leaves. In total, the compounds that proved to have the highest explanatory power for aphid-infested leaves were 3-hexenal and 5-methyl-2-furanone, and for moth-infested leaves, trans-α-farnesene and 4-cyanocyclohexane. The aphid-infested leaves contained around half the amount of chlorophylls and twice the amount of proline compared to uninfected leaves, and these results evidenced that aphids influence plant physiology more than chewing insects. Full article
Show Figures

Figure 1

18 pages, 4985 KiB  
Article
Improvement in the Identification Technology for Asian Spongy Moth, Lymantria dispar Linnaeus, 1758 (Lepidoptera: Erebidae) Based on SS-COI
by Wenzhuai Ji, Fengrui Dou, Chunhua Zhang, Yuqian Xiao, Wenqi Yin, Jinyong Yu, D. K. Kurenshchikov, Xiue Zhu and Juan Shi
Insects 2023, 14(1), 94; https://doi.org/10.3390/insects14010094 - 16 Jan 2023
Cited by 4 | Viewed by 4058
Abstract
Lymantria dispar (Linnaeus, 1758), which is commonly known as spongy moth, with two subspecies, is found in Asia: Lymantria dispar asiatica and Lymantria dispar japonica, collectively referred to as the Asian spongy moth (ASM). The subspecies Lymantria dispar dispar occurs in Europe [...] Read more.
Lymantria dispar (Linnaeus, 1758), which is commonly known as spongy moth, with two subspecies, is found in Asia: Lymantria dispar asiatica and Lymantria dispar japonica, collectively referred to as the Asian spongy moth (ASM). The subspecies Lymantria dispar dispar occurs in Europe and is commonly known as the European spongy moth (ESM). The ASM is on the quarantine list of many countries because it induces greater economic losses than the ESM. Accurate identification is essential to prevent the invasion of ASM into new areas. Although several techniques for identifying ASMs have been developed, the recent discovery of complex patterns of genetic variation among ASMs in China as well as new subspecies in some areas has necessitated the development of new, improved identification techniques, as previously developed techniques are unable to accurately identify ASMs from all regions in China. Here, we demonstrate the efficacy of an improved technique for the identification of the ASM using ASM-specific primers, which were designed based on cytochrome oxidase I sequences from samples obtained from all sites where ASMs have been documented to occur in China. We show that these primers are effective for identifying a single ASM at all life stages and from all ASM populations in China, and the minimum detectable concentration of genomic DNA was 30 pg. The inclusion of other Lymantria samples in our analysis confirmed the high specificity of the primers. Our improved technique allows the spread of ASMs to be monitored in real time and will help mitigate the spread of ASMs to other areas. Full article
(This article belongs to the Section Insect Systematics, Phylogeny and Evolution)
Show Figures

Figure 1

35 pages, 2144 KiB  
Review
Lymantria dispar (L.) (Lepidoptera: Erebidae): Current Status of Biology, Ecology, and Management in Europe with Notes from North America
by Maria C. Boukouvala, Nickolas G. Kavallieratos, Anna Skourti, Xavier Pons, Carmen López Alonso, Matilde Eizaguirre, Enrique Benavent Fernandez, Elena Domínguez Solera, Sergio Fita, Tanja Bohinc, Stanislav Trdan, Paraskevi Agrafioti and Christos G. Athanassiou
Insects 2022, 13(9), 854; https://doi.org/10.3390/insects13090854 - 19 Sep 2022
Cited by 56 | Viewed by 9246
Abstract
The European Spongy moth, Lymantria dispar (L.) (Lepidoptera: Erebidae), is an abundant species found in oak woods in Central and Southern Europe, the Near East, and North Africa and is an important economic pest. It is a voracious eater and can completely defoliate [...] Read more.
The European Spongy moth, Lymantria dispar (L.) (Lepidoptera: Erebidae), is an abundant species found in oak woods in Central and Southern Europe, the Near East, and North Africa and is an important economic pest. It is a voracious eater and can completely defoliate entire trees; repeated severe defoliation can add to other stresses, such as weather extremes or human activities. Lymantria dispar is most destructive in its larval stage (caterpillars), stripping away foliage from a broad variety of trees (>500 species). Caterpillar infestation is an underestimated problem; medical literature reports that established populations of caterpillars may cause health problems to people and animals. Inflammatory reactions may occur in most individuals after exposure to setae, independent of previous exposure. Currently, chemical and mechanical methods, natural predators, and silvicultural practices are included for the control of this species. Various insecticides have been used for its control, often through aerial sprayings, which negatively affect biodiversity, frequently fail, and are inappropriate for urban/recreational areas. However, bioinsecticides based on various microorganisms (e.g., entomopathogenic viruses, bacteria, and fungi) as well as technologies such as mating disruption using sex pheromone traps have replaced insecticides for the management of L. dispar. Full article
Show Figures

Figure 1

Back to TopTop