Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = European forestry dynamics model (EFDM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2782 KiB  
Article
Forest Resources Projection Tools: Comparison of Available Tools and Their Adaptation to Polish Conditions
by Emilia Wysocka-Fijorek, Ewelina Dobrowolska, Piotr Budniak, Krzysztof Korzeniewski and Damian Czubak
Forests 2023, 14(3), 548; https://doi.org/10.3390/f14030548 - 10 Mar 2023
Cited by 2 | Viewed by 2341
Abstract
Over the years, various methods for estimating and projecting forest resources have been developed and are used by countries where the forest sector is important. Therefore, the obligation to report and account for forest resources, including changes in carbon stocks in a forest [...] Read more.
Over the years, various methods for estimating and projecting forest resources have been developed and are used by countries where the forest sector is important. Therefore, the obligation to report and account for forest resources, including changes in carbon stocks in a forest area, has gained attention. The latest regulations (Land Use, Land Use Change and Forestry—LULUCF) requires European Union (EU) members to annually report and publish national accounting plans estimating emissions and removals from managed forest areas (Regulation EU 2018/841). The major challenge is to choose and adapt a unique tool for this accounting. At the same time, they need to provide reliable estimates that are recognized by regulators and control authorities. This study focuses on comparing the adaptation of two accounting frameworks: the Operational-Scale Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) and the European Forest Dynamics Model (EFDM). Both tools are based on National Forest Inventory (NFI) data. It is assumed that the EFDM can provide similar results to the CBM-CFS3, which is already used in Poland. Implementing the EFDM and adapting it to Polish conditions could facilitate forest management decision-making and the preparation of forest policies. The main objective of this study was to compare and validate the accuracy of the results obtained with the EFDM framework. Metrics compared using both tools included growing stock volume, biomass of growing stock expressed in carbon units and age–class distribution over area. The comparison was based on the agreement of EFDM with CBM-CFS3 results. The volume of logging was taken from the EFDM and compared with the values obtained by Statistics Poland. This study also provides a guide for framework parameterization directly from the Polish National Forest Inventory data from the 2010–2015 cycle. Our main findings are that the results of the two models are reasonably comparable (the extent of deviation is acceptable). Moreover, the first implementation of the EFDM showed that it is an easy-to-use open-source program that allows forest managers to implement their own settings according to their needs. This document elucidates the concept of using both frameworks under Polish conditions and provides an impression of their performance for future modelers, students and researchers. Full article
(This article belongs to the Special Issue Adaptation of Trees to Abiotic Stress Induced by Environmental Change)
Show Figures

Figure 1

35 pages, 8860 KiB  
Article
Analyzing the Joint Effect of Forest Management and Wildfires on Living Biomass and Carbon Stocks in Spanish Forests
by Patricia Adame, Isabel Cañellas, Daniel Moreno-Fernández, Tuula Packalen, Laura Hernández and Iciar Alberdi
Forests 2020, 11(11), 1219; https://doi.org/10.3390/f11111219 - 19 Nov 2020
Cited by 7 | Viewed by 3300
Abstract
Research Highlights: This is the first study that has considered forest management and wildfires in the balance of living biomass and carbon stored in Mediterranean forests. Background and Objectives: The Kyoto Protocol and Paris Agreement request countries to estimate and report [...] Read more.
Research Highlights: This is the first study that has considered forest management and wildfires in the balance of living biomass and carbon stored in Mediterranean forests. Background and Objectives: The Kyoto Protocol and Paris Agreement request countries to estimate and report carbon emissions and removals from the forest in a transparent and reliable way. The aim of this study is to forecast the carbon stored in the living biomass of Spanish forests for the period 2000–2050 under two forest management alternatives and three forest wildfires scenarios. Materials and Methods: To produce these estimates, we rely on data from the Spanish National Forest Inventory (SNFI) and we use the European Forestry Dynamics Model (EFDM). SNFI plots were classified according to five static (forest type, known land-use restrictions, ownership, stand structure and bioclimatic region) and two dynamic factors (quadratic mean diameter and total volume). The results were validated using data from the latest SNFI cycle (20-year simulation). Results: The increase in wildfire occurrence will lead to a decrease in biomass/carbon between 2000 and 2050 of up to 22.7% in the medium–low greenhouse gas emissions scenario (B2 scenario) and of up to 32.8% in the medium–high greenhouse gas emissions scenario (A2 scenario). Schoolbook allocation management could buffer up to 3% of wildfire carbon loss. The most stable forest type under both wildfire scenarios are Dehesas. As regards bioregions, the Macaronesian area is the most affected and the Alpine region, the least affected. Our validation test revealed a total volume underestimation of 2.2% in 20 years. Conclusions: Forest wildfire scenarios provide more realistic simulations in Mediterranean forests. The results show the potential benefit of forest management, with slightly better results in schoolbook forest management compared to business-as-usual forest management. The EFDM harmonized approach simulates the capacity of forests to store carbon under different scenarios at national scale in Spain, providing important information for optimal decision-making on forest-related policies. Full article
(This article belongs to the Special Issue Forest Resources Assessments: Mensuration, Inventory and Planning)
Show Figures

Graphical abstract

22 pages, 4350 KiB  
Article
A Markov Chain Model for Simulating Wood Supply from Any-Aged Forest Management Based on National Forest Inventory (NFI) Data
by Jari Vauhkonen and Tuula Packalen
Forests 2017, 8(9), 307; https://doi.org/10.3390/f8090307 - 23 Aug 2017
Cited by 13 | Viewed by 6132
Abstract
Markov chain models have been applied for a long time to simulate forest dynamics based on transitions in matrices of tree diameter classes or areas of forest size and structure types. To date, area-based matrix models have been applied assuming either even-aged or [...] Read more.
Markov chain models have been applied for a long time to simulate forest dynamics based on transitions in matrices of tree diameter classes or areas of forest size and structure types. To date, area-based matrix models have been applied assuming either even-aged or uneven-aged forest management. However, both management systems may be applied simultaneously due to land-use constraints or the rationality of combining the systems, which is called any-aged management. We integrated two different Markov chain models, one for even-aged and another for uneven-aged forest management, in an area-based approach to analyze wood supply from any-aged forest management. We evaluate the impacts of parameterizing the model based on available data sets, namely permanent and temporary Finnish National Forest Inventory (NFI) sample plots and a plot-level simulator to determine transitions due to different types of thinning treatments, and present recommendations for the related methodological choices. Our overall observation is that the combined modelling chain simulated the development of both the even- and uneven-aged forest structures realistically. Due to the flexibility of the implementation, the approach is very well suited for situations where scenario assumptions need to be varied according to expected changes in silvicultural practices or land-use constraints, for example. Full article
Show Figures

Graphical abstract

17 pages, 661 KiB  
Article
Behavioral Modelling in a Decision Support System
by Francesca Rinaldi, Ragnar Jonsson, Ola Sallnäs and Renats Trubins
Forests 2015, 6(2), 311-327; https://doi.org/10.3390/f6020311 - 2 Feb 2015
Cited by 21 | Viewed by 6808
Abstract
Considering the variety of attitudes, objectives and behaviors characterizing forest owners is crucial for accurately assessing the impact of policy and market drivers on forest resources. A serious shortcoming of existing pan-European Decision Support Systems (DSS) is that they do not account for [...] Read more.
Considering the variety of attitudes, objectives and behaviors characterizing forest owners is crucial for accurately assessing the impact of policy and market drivers on forest resources. A serious shortcoming of existing pan-European Decision Support Systems (DSS) is that they do not account for such heterogeneity, consequently disregarding the effects that this might have on timber supply and forest development. Linking a behavioral harvesting decision model—Expected Value Asymmetries (EVA)—to a forest resource dynamics model—European Forestry Dynamics Model (EFDM)—we provide an example of how forest owner specific characterization can be integrated in a DSS. The simulation results indicate that the approach holds promise as regards accounting for forest owner behavior in simulations of forest resources development. Hence, forest owner heterogeneity makes the distribution of forestland on owner types non-trivial, as it affects harvesting intensity and, subsequently, inter-temporal forest development. Full article
Show Figures

Figure 1

Back to TopTop