Analyzing the Joint Effect of Forest Management and Wildfires on Living Biomass and Carbon Stocks in Spanish Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. SNFI Data and Auxiliary Information
2.2. EFDM Model
- Spanish Forest Map 1:50,000 [41] providing the cartographic base to assign the equivalent area to each plot.
- The initial state (defined by the five static factors and two dynamics factors for each plot) was determined based on the SNFI3. The data processing involved the initial estimation and formatting of the data for the EFDM.
- The dynamics of any-aged forest management were simulated by using the forest area classified in the quadratic mean diameter and volume matrix as an input for the EFDM, plus the five static factors. Starting from the statements provided by experts [28] and then following by an iterative process, static factors were weighted selecting those that minimized the error. The selected weights were as follows: forest type (1), bioclimatic region (0.4), known land-use restrictions (0.2), ownership (0.2) and stand structure (0.2).
- Modeling the transitions due to natural processes was performed using pairwise observations from plots measured in both the SNFI2 and SNFI3 (51,676 plots out of 81,024 plots). These two data sets were also used to derive the transition probabilities matrix. Some plots, especially in the Atlantic bioregion, could not be included in the model because they were not re-measured in two consecutives inventories.
- The activities applied in our simulations were “No Management”, “Thinning”, “Final Felling”, and “Wildfire”.
- The activity probabilities were defined in two steps with two assumptions. First, the initial allocation of the harvests to the different types of forests was assumed to follow either the proportion of harvests carried out during the SNFI2–SNFI3 ten-year period (“business-as-usual allocation”, ABAU) or the application of future harvests in accordance with the specific silvicultural recommendations (“schoolbook allocation”, ASB) which are given in Serrada et al. [42] per species at national level. In a second step, the final values for the activity probabilities under both the allocations were obtained by iteratively adjusting the initial probabilities to produce the harvest levels in future, large-scale scenarios.
3. Results
3.1. Business-as-Usual Allocation (ABAU) Management
3.2. Schoolbook Allocation (ASB) Management
3.3. Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dixon, R.K.; Solomon, A.M.; Brown, S.; Houghton, R.A.; Trexier, M.C.; Wisniewski, J. Carbon Pools and Flux of Global Forest Ecosystems. Science 1994, 263, 185–190. [Google Scholar] [CrossRef] [PubMed]
- FOREST EUROPE. State of Europe’s Forests. 2015. Available online: https://www.foresteurope.org/docs/fullsoef2015.pdf (accessed on 10 June 2020).
- UNFCCC United Nations Framework Convention on Climate Change. Available online: https://unfccc.int (accessed on 9 June 2020).
- UNFCC Kyoto Protocol Reference Manual. United Nations Framew. Conv. Clim. Chang. 2008. Available online: https://unfccc.int/sites/default/files/08_unfccc_kp_ref_manual.pdf (accessed on 9 September 2019).
- UNFCCC ADOPTION OF THE PARIS AGREEMENT—Conference of the Parties COP 21, Adopt, Paris Agreement. 2015. Available online: http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf (accessed on 9 September 2019).
- Forsell, N.; Korosuo, A.; Federici, S.; Gusti, M.; Rincón-Cristóbal, J.-J.; Rüter, S.; Sánchez-Jiménez, B.; Dore, C.; Brajterman, O.; Gardiner, J. Guidance on Developing and Reporting the Forest Reference Levels in Accordance with Regulation (EU) 2018/841. Available online: https://op.europa.eu/en/publication-detail/-/publication/5ef89b70-8fba-11e8-8bc1-01aa75ed71a1/language-en (accessed on 17 November 2020).
- Lindner, M.; Maroschek, M.; Netherer, S.; Kremer, A.; Barbati, A.; Garcia-Gonzalo, J.; Seidl, R.; Delzon, S.; Corona, P.; Kolström, M.; et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manag. 2010, 259, 698–709. [Google Scholar] [CrossRef]
- McKenzie, D.; Gedalof, Z.; Peterson, D.L.; Mote, P. Climatic change, wildfire, and conservation. Conserv. Biol. 2004, 18, 890–902. [Google Scholar] [CrossRef]
- Dale, V.H.; Joyce, L.A.; Mcnulty, S.; Neilson, R.P.; Ayres, M.P.; Flaningan, M.D.; Hanson, P.J.; Irland, L.C.; Lugo, A.E.; Peterson, C.J.; et al. Climate Change and Forest Disturbances. Bioscience 2001, 51, 723–734. [Google Scholar] [CrossRef] [Green Version]
- D’Amato, A.W.; Bradford, J.B.; Fraver, S.; Palik, B.J. Forest management for mitigation and adaptation to climate change: Insights from long-term silviculture experiments. For. Ecol. Manag. 2011, 262, 803–816. [Google Scholar] [CrossRef]
- Biber, P.; Borges, J.G.; Moshammer, R.; Barreiro, S.; Botequim, B.; Brodrechtová, Y.; Brukas, V.; Chirici, G.; Cordero-Debets, R.; Corrigan, E.; et al. How sensitive are ecosystem services in European forest landscapes to silvicultural treatment? Forests 2015, 6, 1666–1695. [Google Scholar] [CrossRef] [Green Version]
- Taylor, A.R.; Wang, J.R.; Kurz, W.A. Effects of harvesting intensity on carbon stocks in eastern Canadian red spruce (Picea rubens) forests: An exploratory analysis using the CBM-CFS3 simulation model. For. Ecol. Manag. 2008, 255, 3632–3641. [Google Scholar] [CrossRef]
- Kindermann, G.E.; Schörghuber, S.; Linkosalo, T.; Sanchez, A.; Rammer, W.; Seidl, R.; Lexer, M.J. Potential stocks and increments of woody biomass in the European Union under different management and climate scenarios. Carbon Balance Manag. 2013, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- De Luís, M.; García-Cano, M.; Cortina, J.; Raventós, J.; Gonzalez-Hidalgo, J.; Sanchez, J. Climatic trends, disturbances and short-term vegetation dynamics in a Mediterranean shrubland. For. Ecol. Manag. 2001, 147, 25–37. [Google Scholar] [CrossRef]
- Pausas, J.G.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfires a disaster in the Mediterranean basin?—A review. Int. J. Wildl. Fire 2009, 17, 713–723. [Google Scholar] [CrossRef]
- Rubio, J.L. Desertificación en la Comunidad Valenciana: Antecedentes históricos y situación actual de erosión. Rev. Valencia. D’Estudis Autonòmics 1987, 7, 231–258. [Google Scholar]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Howden, S.; Moore, J.; McKeon, G.; Reyenga, P.; Carter, J.; Scanlan, J. Global Change Impacts on Fire Dynamics in the Mulga Woodlands of South-West Queensland; Working Paper Series 99/05; CSIRO Wildlife and Ecology: Canberra, Australia, 1999. [Google Scholar]
- Flannigan, M.D.; Krawchuk, M.A.; De Groot, W.J.; Wotton, B.M.; Gowman, L.M. Implications of changing climate for global wildland fire. Int. J. Wildl. Fire 2009, 18, 483–507. [Google Scholar] [CrossRef]
- Moriondo, M.; Good, P.; Durao, R.; Bindi, M.; Giannakopoulos, C.; Corte-Real, J. Potential impact of climate change on fire risk in the Mediterranean area. Clim. Res. 2006, 31, 85–95. [Google Scholar] [CrossRef]
- Nabuurs, G.J.; Päivinen, R.; Schanz, H. Sustainable management regimes for Europe’s forests—A projection with EFISCEN until 2050. For. Policy Econ. 2001, 3, 155–173. [Google Scholar] [CrossRef]
- Eriksson, L.O.; Sallnäs, O.; Ståhl, G. Forest certification and Swedish wood supply. For. Policy Econ. 2007, 9, 452–463. [Google Scholar] [CrossRef]
- Verkerk, P.J.; Anttila, P.; Eggers, J.; Lindner, M.; Asikainen, A. The realisable potential supply of woody biomass from forests in the European Union. For. Ecol. Manag. 2011, 261, 2007–2015. [Google Scholar] [CrossRef]
- Kindermann, G.; Obersteiner, M.; Sohngen, B.; Sathaye, J.; Andrasko, K.; Rametsteiner, E.; Schlamadinger, B.; Wunder, S.; Beach, R. Global cost estimates of reducing carbon emissions through avoided deforestation. Proc. Natl. Acad. Sci. USA 2008, 105, 10302–10307. [Google Scholar] [CrossRef] [Green Version]
- IIASA Globiom Model. Int. Institute Appl. Syst. Anal. 2014. Available online: http://www.globiom.org (accessed on 15 August 2020).
- Kurz, W.A.; Dymond, C.C.; White, T.M.; Stinson, G.; Shaw, C.H.; Rampley, G.J.; Smyth, C.; Simpson, B.N.; Neilson, E.T.; Trofymow, J.A.; et al. CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol. Modell. 2009, 220, 480–504. [Google Scholar] [CrossRef]
- Packalen, T.; Sallnäs, O.; Sirkiä, S.; Korhonen, K.; Salminen, O.; Vidal, C.; Robert, N.; Colin, A.; Belouard, T.; Schadauer, K. The European Forestry Dynamics Model: Concept, Design and Results of First Case Studies; Publications Office of the European Union: Luxembourg, 2014. [Google Scholar]
- Sallnäs, O.; Berger, A.; Räty, M.; Trubins, R. An area-based matrix model for uneven-aged forests. Forests 2015, 6, 1500–1515. [Google Scholar] [CrossRef] [Green Version]
- Vauhkonen, J.; Packalen, T. A Markov chain model for simulating wood supply from any-aged forest management based on National Forest Inventory (NFI) data. Forests 2017, 8, 307. [Google Scholar] [CrossRef] [Green Version]
- Vauhkonen, J.; Berger, A.; Gschwantner, T.; Schadauer, K.; Lejeune, P.; Perin, J.; Pitchugin, M.; Adolt, R.; Zeman, M.; Johannsen, V.K.; et al. Harmonised projections of future forest resources in Europe. Ann. For. Sci. 2019, 76, 79. [Google Scholar] [CrossRef] [Green Version]
- Vauhkonen, J.; Packalen, T. Uncertainties related to climate change and forest management with implications on climate regulation in Finland. Ecosyst. Serv. 2018, 33, 213–224. [Google Scholar] [CrossRef]
- Vázquez de la Cueva, A.; Quintana, J.R.; Cañellas, I. Fire activity projections in the SRES A2 and B2 climatic scenarios in peninsular Spain. Int. J. Wildl. Fire 2012, 21, 653–665. [Google Scholar] [CrossRef]
- Alberdi, I.; Vallejo, R.; Álvarez-González, J.G.; Condés, S.; González-Ferreiro, E.; Guerrero, S.; Hernández, L.; Martínez-Jauregui, M.; Montes, F.; Oliveira, N.; et al. The multi-objective Spanish National Forest Inventory. For. Syst. 2017, 26, e04S. [Google Scholar] [CrossRef]
- Alberdi, I.; Cañellas, I.; Condes, S. A long-scale biodiversity monitoring methodology for Spanish national forest inventory. Application to Álava region. For. Syst. 2014, 23, 93–110. [Google Scholar] [CrossRef]
- Vauhkonen, J.; Packalen, T. Shifting from even-aged management to less intensive forestry in varying proportions of forest land in Finland: Impacts on carbon storage, harvest removals, and harvesting costs. Eur. J. For. Res. 2019, 138, 219–238. [Google Scholar] [CrossRef] [Green Version]
- FOREST EUROPE, UNECE and FAO. State of Europe’s Forests 2011. Status and Trends in Sustainable Forest Management in Europe, 2011. Available online: http://www.unece.org/fileadmin/DAM/publications/timber/Forest_Europe_report_2011_web.pdf (accessed on 6 June 2020).
- Alberdi, I.; Michalak, R.; Fischer, C.; Gasparini, P.; Brändli, U.B.; Tomter, S.M.; Kuliesis, A.; Snorrason, A.; Redmond, J.; Hernández, L.; et al. Towards harmonized assessment of European forest availability for wood supply in Europe. For. Policy Econ. 2016, 70, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Europe’s Biodiversity—Biogeographical Regions and Seas. Biogeogr. Reg. Eur. Introd. Eur. Environ. Agency 2002. Available online: https://www.eea.europa.eu/publications/report_2002_0524_154909 (accessed on 4 December 2019).
- IPCC. Special Report on Emissions Scenarios; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- MAGRAMA Mapa Forestal de España 1:50,000 (MFE). Available online: https://www.mapa.gob.es/es/desarrollo-rural/temas/politica-forestal/inventario-cartografia/mapa-forestal-espana/mfe_50.aspx (accessed on 25 September 2020).
- Serrada, R.; Montero, G.; Reque, J.A. Compendio de Selvicultura aplicada en España; INIA y FUCOVASA: Madrid, Spain, 2008. [Google Scholar]
- Montero, G.; Ruiz-Peinado, R.; Muñoz, M. Producción de Biomasa y Fijación de CO2 por los Bosques Españoles; Instituto Nacional de Investigación Agraria y Alimentaria INIA: Madrid, Spain, 2005. [Google Scholar]
- Vanclay, J.K. Sustainable timber harvesting: Simulation studies in the tropical rainforests of north Queensland. For. Ecol. Manag. 1994, 69, 299–320. [Google Scholar] [CrossRef] [Green Version]
- Vayreda, J.; Martinez-Vilalta, J.; Gracia, M.; Retana, J. Recent climate changes interact with stand structure and management to determine changes in tree carbon stocks in Spanish forests. Glob. Chang. Biol. 2012, 18, 1028–1041. [Google Scholar] [CrossRef]
- Ruiz-Peinado, R.; Bravo-Oviedo, A.; López-Senespleda, E.; Bravo, F.; del Río, M. Forest management and carbon sequestration in the Mediterranean region: A review. For. Syst. 2017, 26, eR04S. [Google Scholar] [CrossRef]
- Assmann, E. The Principles of Forest Yield Study. Studies in the Organic Production, Structure, Increment and Yield of Forest Stands; Elsevier: Amsterdam, The Netherlands, 1970. [Google Scholar] [CrossRef]
- Carpentier, S.; Filotas, E.; Handa, I.T.; Messier, C. Trade-offs between timber production, carbon stocking and habitat quality when managing woodlots for multiple ecosystem services. Environ. Conserv. 2017, 44, 14–23. [Google Scholar] [CrossRef] [Green Version]
- Olano, J.M.; Palmer, M.W. Stand dynamics of an Appalachian old-growth forest during a severe drought episode. For. Ecol. Manag. 2003, 174, 139–148. [Google Scholar] [CrossRef]
- Vila-Cabrera, A.; Martinez-Vilalta, J.; Vayreda, J.; Retana, J. Structural and climatic determinants of demographic rates of Scots pine forests across the Iberian Peninsula. Ecol. Appl. 2011, 21, 1162–1172. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Fernández, D.; Díaz-Pinés, E.; Barbeito, I.; Sánchez-González, M.; Montes, F.; Rubio, A.; Cañellas, I. Temporal carbon dynamics over the rotation period of two alternative management systems in Mediterranean mountain Scots pine forests. For. Ecol. Manag. 2015, 348, 186–195. [Google Scholar] [CrossRef]
- Bolte, A.; Ammer, C.; Löf, M.; Madsen, P.; Nabuurs, G.J.; Schall, P.; Spathelf, P.; Rock, J. Adaptive forest management in central Europe: Climate change impacts, strategies and integrative concept. Scand. J. For. Res. 2009, 24, 473–482. [Google Scholar] [CrossRef]
- Moreno-Fernández, D.; Ledo, A.; Martín-Benito, D.; Cañellas, I.; Gea-Izquierdo, G. Negative synergistic effects of land-use legacies and climate drive widespread oak decline in evergreen Mediterranean open woodlands. For. Ecol. Manag. 2019, 432, 884–894. [Google Scholar] [CrossRef]
- Gea-Izquierdo, G.; Cañellas, I.; Montero, G. Site index in agroforestry systems: Age-dependent and age-independent dynamic diameter growth models for Quercus ilex in Iberian open oak woodlands. Can. J. For. Res. 2008, 38, 101–113. [Google Scholar] [CrossRef] [Green Version]
- Garzón-Machado, V.; del Arco Aguilar, M.J.; González, F.V.; Pérez-de-Paz, P.L. Fire as a threatening factor for endemic plants of the Canary Islands. Biodivers. Conserv. 2012, 21, 2621–2632. [Google Scholar] [CrossRef]
- ISTAC. Available online: http://www.gobiernodecanarias.org/istac (accessed on 15 February 2020).
- Bello-Rodríguez, V.; Gómez, L.A.; Fernández López, Á.; Del-Arco-Aguilar, M.J.; Hernández-Hernández, R.; Emerson, B.; González-Mancebo, J.M. Short- and long-term effects of fire in subtropical cloud forests on an oceanic island. Land Degrad. Dev. 2019, 30, 448–458. [Google Scholar] [CrossRef]
- Climent, J.; Tapias, R.; Pardos, J.A.; Gil, L. Fire adaptations in the Canary Islands pine (Pinus canariensis). Plant Ecol. 2004, 171, 185–196. [Google Scholar] [CrossRef]
- Trasobares, A.; Tomé, M.; Miina, J. Growth and yield model for Pinus halepensis Mill. in Catalonia, north-east Spain. For. Ecol. Manag. 2004, 203, 49–62. [Google Scholar] [CrossRef]
- Ruiz-Benito, P.; Lines, E.R.; Gómez-Aparicio, L.; Zavala, M.A.; Coomes, D.A. Patterns and Drivers of Tree Mortality in Iberian Forests: Climatic Effects Are Modified by Competition. PLoS ONE 2013, 8, e56843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karvonen, J.; Halder, P.; Kangas, J.; Leskinen, P. Indicators and tools for assessing sustainability impacts of the forest bioeconomy. For. Ecosyst. 2017, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Soalleiro, R.; Eimil-Fraga, C.; Gómez-García, E.; García-Villabrille, J.D.; Rojo-Alboreca, A.; Muñoz, F.; Oliveira, N.; Sixto, H.; Pérez-Cruzado, C. Exploring the factors affecting carbon and nutrient concentrations in tree biomass components in natural forests, forest plantations and short rotation forestry. For. Ecosyst. 2018, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Beedlow, P.A.; Tingey, D.T.; Phillips, D.L.; Hogsett, W.E.; Olszyk, D.M. Rising Atmospheric CO2 and Carbon Sequestration in Forests. Front. Ecol. Environ. 2004, 2, 315. [Google Scholar] [CrossRef]
- Pasalodos-Tato, M.; Ruiz-Peinado, R.; del Río, M.; Montero, G. Shrub biomass accumulation and growth rate models to quantify carbon stocks and fluxes for the Mediterranean region. Eur. J. For. Res. 2015, 134, 537–553. [Google Scholar] [CrossRef]
- San Miguel, A.; Roig, S.; Cañellas, I. Fruticeticultura, Gestión de arbustedos y matorrales. In Compendio de Selvicultura aplicada en España; Serrada, R., Montero, G., Reque, J., Eds.; INIA y FUCOVASA: Madrid, Spain, 2008; pp. 877–907. [Google Scholar]
- Flannigan, M.D.; Stocks, B.J.; Wotton, B.M. Climate change and forest fires. Sci. Total Environ. 2000, 262, 221–229. [Google Scholar] [CrossRef]
- International Union of Forest Research Organizations. Global Fire Challenges in a Warming World; Robinne, F.-N., Burns, J., Kant, P., de Groot, B., Flannigan, M.D., Kleine, M., Wotton, D.M., Eds.; Occasional Paper No. 32; IUFRO: Vienna, Austria, 2018. [Google Scholar]
- Weber, M.G.; Flannigan, M.D. Canadian boreal forest ecosystem structure and function in a changing climate: Impact on fire regimes. Environ. Rev. 1997, 5, 145–166. [Google Scholar] [CrossRef]
- Gea-Izquierdo, G.; Viguera, B.; Cabrera, M.; Cañellas, I. Drought induced decline could portend widespread pine mortality at the xeric ecotone in managed mediterranean pine-oak woodlands. For. Ecol. Manag. 2014, 320, 70–82. [Google Scholar] [CrossRef]
- Forsell, N.; Korosuo, A.; Gusti, M.; Rüter, S.; Havlik, P.; Obersteiner, M. Impact of modelling choices on setting the reference levels for the EU forest carbon sinks: How do different assumptions affect the country-specific forest reference levels? Carbon Balance Manag. 2019, 14, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Díaz, P.; Ruiz-Benito, P.; Ruiz, J.G.; Chamorro, G.; Zavala, M.A. A multifactorial approach to value supporting ecosystem services in Spanish forests and its implications in a warming world. Sustainability 2019, 11, 358. [Google Scholar] [CrossRef] [Green Version]
Simulation Plots | Simulation Area (1000 ha) | Validation Plots | Validation Area (1000 ha) | |
---|---|---|---|---|
Forest type | ||||
Broadleaf forests | 28,992 | 6144.5 | 4874 | 1031.1 |
Conifer forests | 28,092 | 4834.4 | 4664 | 757.8 |
Mixed forests | 7013 | 1248.8 | 1323 | 334.5 |
Dehesas | 4679 | 2014.3 | 777 | 246.3 |
Other Conifer forests | 5116 | 876.7 | 615 | 104.1 |
Conifer plantations | 3316 | 518.8 | 897 | 145.2 |
Broadleaf plantations | 3816 | 658.1 | 517 | 96.0 |
Wood supply | ||||
FAWS | 73,306 | 15,147.1 | 12,211 | 2530.6 |
FNAWS | 7718 | 1148.5 | 1456 | 184.3 |
Owner | ||||
Private | 49,560 | 10,570.6 | 9709 | 2047.6 |
Public | 31,464 | 5725.1 | 3958 | 667.3 |
Stand structure | ||||
Even-aged | 22,604 | 4157.9 | 3768 | 703.9 |
Uneven-aged | 58,420 | 12,137.8 | 9899 | 2011.0 |
Bioclimatic region | ||||
Alpine | 3103 | 501.0 | 618 | 98.4 |
Atlantic | 13,539 | 2459.8 | 2946 | 546.4 |
Macaronesian | 2414 | 141.5 | 791 | 43.9 |
Mediterranean | 61,968 | 13,193.4 | 9312 | 2026.2 |
TOTAL | 81,024 | 16,295.7 | 13,667 | 2714.9 |
Combinations | Management Regimes | Wildfire Scenarios |
---|---|---|
1 | Business-as-usual allocation (ABAU) | Present |
2 | Business-as-usual allocation (ABAU) | B2 |
3 | Business-as-usual allocation (ABAU) | A2 |
4 | Schoolbook allocation (ASB) | Present |
5 | Schoolbook allocation (ASB) | B2 |
6 | Schoolbook allocation (ASB) | A2 |
Present Scenario (Combination 1) | B2 Scenario (Combination 2) | A2 Scenario (Combination 3) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 2010 | 2020 | 2030 | 2040 | 2050 | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | ||
Area | 1000 ha | 16,295.7 | 16,295.7 | 16,295.7 | |||||||||||||||
Volume (Growing stock) | M m3 | 962.0 | 1195.5 | 1400.0 | 1575.7 | 1723.4 | 1844.0 | 962.0 | 1154.3 | 1308.4 | 1432.0 | 1528.8 | 1601.9 | 962.0 | 1133.6 | 1264.2 | 1364.7 | 1440.0 | 1494.1 |
Volume (Fellings) | M m3 | 75.1 | 105.7 | 130.8 | 151.4 | 168.6 | 182.9 | 75.1 | 101.6 | 121.0 | 135.5 | 146.8 | 155.6 | 75.1 | 99.6 | 116.3 | 128.1 | 136.9 | 143.5 |
Biomass (Aboveground) | M Mg | 920.2 | 1121.4 | 1292.8 | 1439.6 | 1562.9 | 1663.6 | 920.2 | 1078.8 | 1205.1 | 1307.0 | 1387.3 | 1448.4 | 920.2 | 1057.5 | 1162.7 | 1244.7 | 1306.9 | 1352.2 |
Biomass (Underground) | M Mg | 342.0 | 403.1 | 453.1 | 494.0 | 526.8 | 552.7 | 342.0 | 387.3 | 422.5 | 449.6 | 470.2 | 485.5 | 342.0 | 379.4 | 407.6 | 428.7 | 444.2 | 455.3 |
Biomass (Fellings) | M Mg | 63.6 | 88.4 | 108.6 | 125.1 | 139.0 | 150.4 | 63.6 | 84.6 | 99.9 | 111.4 | 120.3 | 127.3 | 63.6 | 82.7 | 95.7 | 105.0 | 111.9 | 117.0 |
Biomass (total) | M Mg | 1325.8 | 1613.0 | 1854.5 | 2058.7 | 2228.7 | 2366.7 | 1325.8 | 1550.7 | 1727.5 | 1868.0 | 1977.8 | 2061.1 | 1325.8 | 1519.6 | 1666.1 | 1778.4 | 1863.0 | 1924.5 |
Carbon (Aboveground) | M Mg | 436.8 | 532.4 | 613.4 | 682.3 | 739.6 | 785.9 | 436.8 | 512.3 | 572.1 | 619.9 | 657.1 | 685.0 | 436.8 | 502.3 | 552.1 | 590.5 | 619.3 | 639.9 |
Carbon (Underground) | M Mg | 162.1 | 190.8 | 213.9 | 232.6 | 247.2 | 258.4 | 162.1 | 183.4 | 199.6 | 211.9 | 221.0 | 227.5 | 162.1 | 179.7 | 192.6 | 202.2 | 209.0 | 213.6 |
Carbon (Fellings) | M Mg | 30.1 | 41.7 | 51.3 | 59.1 | 65.7 | 71.1 | 30.1 | 39.9 | 47.2 | 52.7 | 57.0 | 60.3 | 30.1 | 39.1 | 45.3 | 49.7 | 53.0 | 55.4 |
Carbon (total) | M Mg | 629.0 | 764.9 | 878.6 | 974.0 | 1052.6 | 1115.4 | 629.0 | 735.6 | 818.9 | 884.5 | 935.1 | 972.8 | 629.0 | 721.0 | 790.0 | 842.4 | 881.3 | 908.9 |
Mg/ha | 38.6 | 46.9 | 53.9 | 59.8 | 64.6 | 68.4 | 38.6 | 45.1 | 50.3 | 54.3 | 57.4 | 59.7 | 38.6 | 44.2 | 48.5 | 51.7 | 54.1 | 55.8 |
Total Biomass (M Mg) | Total Carbon (M Mg) | |||||||
---|---|---|---|---|---|---|---|---|
2000 | 2050 | 2000 | 2050 | |||||
Present | Present | B2 | A2 | Present | Present | B2 | A2 | |
Forest type | ||||||||
Broadleaf forests | 481.1 | 782.5 | 658.9 | 604.2 | 225.6 | 359.2 | 302.9 | 277.9 |
Conifer forests | 428.1 | 906.0 | 797.6 | 748.3 | 208.7 | 443.6 | 390.8 | 366.8 |
Mixed forests | 105.1 | 190.4 | 160.8 | 147.8 | 49.3 | 87.9 | 74.4 | 68.5 |
Dehesas | 104.5 | 148.6 | 146.9 | 146.0 | 49.0 | 67.7 | 66.9 | 66.5 |
Other Conifer forests | 54.4 | 118.3 | 106.8 | 101.4 | 26.3 | 56.8 | 51.2 | 48.6 |
Conifer plantations | 65.3 | 91.2 | 83.5 | 79.9 | 31.3 | 44.1 | 40.3 | 38.5 |
Broadleaf plantations | 87.3 | 129.6 | 106.8 | 96.9 | 38.9 | 56.1 | 46.3 | 42.1 |
Wood supply | ||||||||
FAWS | 1233.0 | 2201.3 | 1918.8 | 1792.2 | 585.7 | 1038.2 | 906.1 | 846.8 |
FNAWS | 92.8 | 165.4 | 142.3 | 132.3 | 43.3 | 77.2 | 66.7 | 62.1 |
Owner | ||||||||
Private | 765.3 | 1383.9 | 1207.4 | 1128.6 | 357.3 | 640.8 | 560.0 | 523.9 |
Public | 560.4 | 982.7 | 853.7 | 795.9 | 271.7 | 474.6 | 412.8 | 385.0 |
Stand structure | ||||||||
Even-aged | 394.0 | 776.4 | 674.9 | 629.3 | 186.8 | 367.3 | 320.0 | 298.7 |
Uneven-aged | 931.7 | 1590.3 | 1386.2 | 1295.1 | 442.2 | 748.1 | 652.8 | 610.2 |
Bioclimatic region | ||||||||
Alpine | 74.9 | 122.0 | 118.4 | 116.6 | 38.0 | 60.5 | 58.8 | 57.9 |
Atlantic | 359.9 | 508.8 | 425.6 | 389.0 | 166.7 | 229.9 | 193.0 | 176.8 |
Macaronesian | 12.9 | 16.2 | 11.8 | 10.2 | 5.7 | 7.0 | 5.1 | 4.5 |
Mediterranean | 878.0 | 1719.6 | 1505.3 | 1408.5 | 418.6 | 818.0 | 715.8 | 669.6 |
TOTAL | 1325.8 | 2366.7 | 2061.1 | 1924.5 | 629.0 | 1115.4 | 972.8 | 908.9 |
Present Scenario (Combination 4) | B2 Scenario (Combination 5) | A2 Scenario (Combination 6) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | 2010 | 2020 | 2030 | 2040 | 2050 | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | 2000 | 2010 | 2020 | 2030 | 2040 | 2050 | ||
Area | 1000 ha | 16,295.7 | 16,295.7 | 16,295.7 | |||||||||||||||
Volume (Growing stock) | M m3 | 962.3 | 1190.0 | 1389.7 | 1551.0 | 1681.6 | 1786.5 | 962.0 | 1150.1 | 1301.4 | 1415.2 | 1500.7 | 1563.9 | 962.0 | 1130.4 | 1259.3 | 1352.1 | 1418.7 | 1465.4 |
Volume (Fellings) | M m3 | 102.3 | 133.6 | 169.0 | 195.3 | 214.9 | 230.0 | 98.7 | 124.1 | 151.5 | 169.5 | 181.6 | 190.0 | 102.3 | 133.6 | 169.0 | 195.3 | 214.9 | 230.0 |
Biomass (Aboveground) | M Mg | 920.3 | 1130.6 | 1301.2 | 1436.3 | 1543.5 | 1627.8 | 920.2 | 1088.7 | 1215.6 | 1309.9 | 1379.5 | 1430.1 | 920.2 | 1068.0 | 1174.4 | 1250.9 | 1304.8 | 1342.0 |
Biomass (Underground) | M Mg | 342.0 | 398.7 | 449.8 | 489.3 | 520.4 | 544.9 | 342.0 | 383.5 | 420.5 | 447.5 | 467.5 | 482.2 | 342.0 | 376.0 | 406.4 | 428.0 | 443.3 | 454.1 |
Biomass (Fellings) | M Mg | 90.3 | 113.1 | 142.4 | 165.4 | 182.7 | 196.0 | 87.2 | 105.2 | 127.8 | 143.6 | 154.6 | 162.1 | 85.6 | 101.4 | 121.1 | 134.0 | 142.3 | 147.7 |
Biomass (total) | M Mg | 1352.6 | 1642.4 | 1893.5 | 2091.0 | 2246.6 | 2368.8 | 1349.3 | 1577.4 | 1763.8 | 1901.1 | 2001.5 | 2074.4 | 1347.7 | 1545.5 | 1701.9 | 1812.8 | 1890.4 | 1943.8 |
Carbon (Aboveground) | M Mg | 436.9 | 535.1 | 614.0 | 675.9 | 724.6 | 762.5 | 436.8 | 515.4 | 573.9 | 617.0 | 648.4 | 670.9 | 436.8 | 505.7 | 554.7 | 589.4 | 613.6 | 630.0 |
Carbon (Underground) | M Mg | 162.1 | 187.8 | 210.5 | 227.5 | 240.6 | 250.6 | 162.1 | 180.8 | 196.9 | 208.4 | 216.6 | 222.4 | 162.1 | 177.3 | 190.4 | 199.4 | 205.6 | 209.8 |
Carbon (Fellings) | M Mg | 43.1 | 53.5 | 66.9 | 77.3 | 84.9 | 90.7 | 41.6 | 49.8 | 60.1 | 67.2 | 72.0 | 75.2 | 40.9 | 48.1 | 57.0 | 62.7 | 66.4 | 68.6 |
Carbon (total) | M Mg | 642.1 | 776.4 | 891.4 | 980.7 | 1050.1 | 1103.7 | 640.5 | 746.0 | 831.0 | 892.6 | 937.0 | 968.6 | 639.8 | 731.0 | 802.1 | 851.6 | 885.6 | 908.5 |
Mg/ha | 39.4 | 47.6 | 54.7 | 60.2 | 64.4 | 67.7 | 39.3 | 45.8 | 51.0 | 54.8 | 57.5 | 59.4 | 39.3 | 44.9 | 49.2 | 52.3 | 54.3 | 55.7 |
Total Biomass | Total Carbon | |||||||
---|---|---|---|---|---|---|---|---|
2000 | 2050 | 2000 | 2050 | |||||
Present | Present | B2 | A2 | Present | Present | B2 | A2 | |
Forest type | ||||||||
Broadleaf forests | 494.3 | 815.4 | 693.0 | 638.7 | 231.8 | 365.0 | 311.4 | 287.6 |
Conifer forests | 433.0 | 897.2 | 791.9 | 744.4 | 211.2 | 438.9 | 387.7 | 364.5 |
Mixed forests | 106.8 | 176.1 | 149.2 | 137.5 | 50.1 | 81.2 | 69.0 | 63.6 |
Dehesas | 110.2 | 148.0 | 146.3 | 145.5 | 51.6 | 65.5 | 64.7 | 64.4 |
Other Conifer forests | 56.4 | 111.4 | 101.0 | 96.1 | 27.3 | 53.3 | 48.2 | 45.9 |
Conifer plantations | 69.5 | 83.0 | 76.6 | 74.1 | 33.3 | 39.9 | 36.8 | 35.6 |
Broadleaf plantations | 82.4 | 137.6 | 116.3 | 107.4 | 36.7 | 59.9 | 50.7 | 46.9 |
Wood supply | ||||||||
FAWS | 1262.2 | 2196.3 | 1926.0 | 1805.9 | 599.9 | 1022.7 | 898.6 | 843.3 |
FNAWS | 90.4 | 172.4 | 148.4 | 137.9 | 42.2 | 81.0 | 70.0 | 65.1 |
Owner | ||||||||
Private | 774.6 | 1397.7 | 1227.2 | 1151.8 | 361.8 | 639.0 | 562.4 | 528.4 |
Public | 578.0 | 971.1 | 847.2 | 792.0 | 280.2 | 464.7 | 406.2 | 380.1 |
Stand structure | ||||||||
Even-aged | 399.0 | 718.6 | 629.6 | 591.0 | 189.4 | 338.1 | 296.9 | 279.0 |
Uneven-aged | 953.7 | 1650.1 | 1444.8 | 1352.8 | 452.7 | 765.6 | 671.7 | 629.5 |
Bioclimatic region | ||||||||
Alpine | 78.5 | 115.9 | 112.5 | 110.9 | 39.8 | 57.0 | 55.4 | 54.6 |
Atlantic | 367.4 | 494.2 | 416.5 | 383.3 | 170.3 | 220.4 | 186.7 | 172.3 |
Macaronesian | 13.0 | 16.3 | 11.8 | 10.2 | 5.7 | 7.0 | 5.1 | 4.5 |
Mediterranean | 893.8 | 1742.3 | 1533.6 | 1439.4 | 426.2 | 819.3 | 721.3 | 677.1 |
TOTAL | 1352.6 | 2368.8 | 2074.4 | 1943.8 | 642.1 | 1103.7 | 968.6 | 908.5 |
Business-as-Usual Allocation (ABAU) | Schoolbook Allocation (ASB) | |||
---|---|---|---|---|
Present-B2 Scenarios | Present-A2 Scenarios | Present-B2 Scenarios | Present-A2 Scenarios | |
Forest type | ||||
Broadleaf forests | −25.0% | −36.0% | −22.8% | −32.9% |
Conifer forests | −25.3% | −36.9% | −23.9% | −34.8% |
Mixed forests | −27.4% | −39.5% | −24.0% | −34.5% |
Dehesas | −1.6% | −2.4% | −1.4% | −2.1% |
Other Conifer forests | −21.2% | −31.1% | −18.1% | −26.5% |
Conifer plantations | −12.1% | −17.7% | −8.4% | −11.7% |
Broadleaf plantations | −25.1% | −35.9% | −24.4% | −34.7% |
Wood supply | ||||
FAWS | −22.6% | −32.7% | −20.3% | −29.4% |
FNAWS | −24.3% | −34.9% | −26.2% | −37.7% |
Owner | ||||
Private | −22.6% | −32.7% | −20.8% | −30.1% |
Public | −22.8% | −33.0% | −20.5% | −29.7% |
Stand structure | ||||
Even-aged | −25.3% | −36.7% | −21.2% | −30.4% |
Uneven-aged | −21.6% | −31.2% | −20.5% | −29.7% |
Bioclimatic region | ||||
Alpine | −4.6% | −6.8% | −4.0% | −5.9% |
Atlantic | −22.1% | −31.8% | −19.3% | −27.5% |
Macaronesian | −32.5% | −44.3% | −33.1% | −45.1% |
Mediterranean | −24.4% | −35.4% | −22.7% | −32.9% |
TOTAL | −22.7% | −32.8% | −20.7% | −29.9% |
Validation Plots | EFDM 2010 Volume (M m3) | SNFI4 Volume (M m3) | Relative Bias 20 Year (%) | |
---|---|---|---|---|
Forest type | ||||
Broadleaf forests | 4874 | 81.5 | 84.8 | 4.2% |
Conifer forests | 4664 | 86.2 | 83.3 | −3.3% |
Mixed forests | 1323 | 27.1 | 30.3 | 11.5% |
Dehesas | 777 | 4.4 | 4.6 | 5.0% |
Other Conifer forests | 615 | 10.7 | 11.2 | 4.8% |
Conifer plantations | 897 | 32.7 | 32.9 | 0.8% |
Broadleaf plantations | 517 | 11.8 | 12.7 | 7.7% |
Wood supply | ||||
FAWS | 12,211 | 235.4 | 240.5 | 2.2% |
FNAWS | 1456 | 19.0 | 19.3 | 1.7% |
Owner | ||||
Private | 9709 | 176.3 | 180.2 | 2.2% |
Public | 3958 | 78.0 | 79.7 | 2.1% |
Stand structure | ||||
Even-aged | 3768 | 95.6 | 100.8 | 5.5% |
Uneven-aged | 9899 | 158.8 | 159.0 | 0.2% |
Bioclimatic region | ||||
Alpine | 618 | 16.0 | 16.1 | 0.4% |
Atlantic | 2946 | 89.6 | 97.1 | 8.4% |
Macaronesian | 791 | 5.3 | 6.1 | 13.4% |
Mediterranean | 9312 | 143.4 | 140.6 | −1.9% |
TOTAL | 13,667 | 254.3 | 259.8 | 2.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adame, P.; Cañellas, I.; Moreno-Fernández, D.; Packalen, T.; Hernández, L.; Alberdi, I. Analyzing the Joint Effect of Forest Management and Wildfires on Living Biomass and Carbon Stocks in Spanish Forests. Forests 2020, 11, 1219. https://doi.org/10.3390/f11111219
Adame P, Cañellas I, Moreno-Fernández D, Packalen T, Hernández L, Alberdi I. Analyzing the Joint Effect of Forest Management and Wildfires on Living Biomass and Carbon Stocks in Spanish Forests. Forests. 2020; 11(11):1219. https://doi.org/10.3390/f11111219
Chicago/Turabian StyleAdame, Patricia, Isabel Cañellas, Daniel Moreno-Fernández, Tuula Packalen, Laura Hernández, and Iciar Alberdi. 2020. "Analyzing the Joint Effect of Forest Management and Wildfires on Living Biomass and Carbon Stocks in Spanish Forests" Forests 11, no. 11: 1219. https://doi.org/10.3390/f11111219
APA StyleAdame, P., Cañellas, I., Moreno-Fernández, D., Packalen, T., Hernández, L., & Alberdi, I. (2020). Analyzing the Joint Effect of Forest Management and Wildfires on Living Biomass and Carbon Stocks in Spanish Forests. Forests, 11(11), 1219. https://doi.org/10.3390/f11111219