Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (2)

Search Parameters:
Keywords = Erythronium japonicum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3090 KiB  
Article
Anti-Inflammatory Effects of Asian Fawn Lily (Erythronium japonicum) Extract on Lipopolysaccharide-Induced Depressive-Like Behavior in Mice
by Dong Wook Lim, Joon Park, Daeseok Han, Jaekwang Lee, Yun Tai Kim and Changho Lee
Nutrients 2020, 12(12), 3809; https://doi.org/10.3390/nu12123809 - 11 Dec 2020
Cited by 13 | Viewed by 3730
Abstract
Neuroinflammation is associated with an increased risk of depression. Lipopolysaccharide (LPS) treatment is known to induce pro-inflammatory cytokine secretion and a depressive-like phenotype in mice. Although Erythronium japonicum exhibits various health benefits, the role of E. japonicum extract (EJE) in inflammation-associated depression is [...] Read more.
Neuroinflammation is associated with an increased risk of depression. Lipopolysaccharide (LPS) treatment is known to induce pro-inflammatory cytokine secretion and a depressive-like phenotype in mice. Although Erythronium japonicum exhibits various health benefits, the role of E. japonicum extract (EJE) in inflammation-associated depression is unknown. This study aimed to explore the anti-inflammatory effect of EJE on LPS-induced depressive symptoms in mice using the open field test (OFT), passive avoidance test (PAT), tail suspension test (TST), and forced swim test (FST). LPS-treated mice had significantly increased immobility time in the TST and FST, decreased step-through latency time in the PAT, and decreased locomotor activity in the OFT. However, administration of 100 and 300 mg/kg of EJE significantly improved these depressive-like behaviors. EJE also prevented the increase in mRNA levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and monocyte chemoattractant protein-1 (MCP-1), and the decrease in IL-10 levels by inhibiting nuclear factor-κB (NF-κB) subunit p65 phosphorylation. Additionally, LPS-treated mice showed markedly decreased brain-derived neurotrophic factor (BDNF) levels and phosphorylation of phosphoinositide 3-kinase (PI3K) and Akt, while EJE treatment significantly increased these levels in the hippocampus. These results suggest that EJE ameliorated LPS-induced depressive-like behavior by reducing LPS-induced neuroinflammation and activating the BDNF-PI3K/Akt pathway. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Graphical abstract

17 pages, 2760 KiB  
Article
Erythronium japonicum Alleviates Inflammatory Pain by Inhibiting MAPK Activation and by Suppressing NF-κB Activation via ERK/Nrf2/HO-1 Signaling Pathway
by Joon Park and Yun Tai Kim
Antioxidants 2020, 9(7), 626; https://doi.org/10.3390/antiox9070626 - 16 Jul 2020
Cited by 35 | Viewed by 4279
Abstract
Microglial activation-mediated neuroinflammation influences the development of inflammatory pain. The aim of this study was to investigate the anti-inflammatory effects and mechanisms of aqueous Erythronium japonicum extract (EJE) in microglia activation-mediated inflammatory pain. EJE was found to suppress lipopolysaccharide (LPS)-induced inducible nitric oxide [...] Read more.
Microglial activation-mediated neuroinflammation influences the development of inflammatory pain. The aim of this study was to investigate the anti-inflammatory effects and mechanisms of aqueous Erythronium japonicum extract (EJE) in microglia activation-mediated inflammatory pain. EJE was found to suppress lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), ionized calcium-binding adapter molecule 1 (IBA-1), and pro-inflammatory cytokines in BV2 microglial cells. In addition, LPS-induced c-Jun NH2 terminal protein kinase (JNK) and p38 mitogen-activated protein kinase (MAPK) phosphorylation were inhibited by EJE. Intriguingly, EJE also inhibited p65 phosphorylation by activating extracellular signal-regulated kinase-1/2 (ERK)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling. Furthermore, the effects of EJE treatment, such as HO-1 induction and the reduction of NF-ĸB activation, were reversed by ERK1/2 inhibition. In an inflammatory pain mouse model, Complete Freund’s Adjuvant (CFA)-induced mechanical allodynia and foot swelling were alleviated by the oral administration of EJE. Consistent with in vitro results, EJE increased HO-1, while decreasing CFA-induced COX-2, IBA-1, and pro-inflammatory cytokines in the spinal cord. Among the components of EJE, butanol most heavily suppressed LPS-induced microglial activation and increased HO-1 expression. These findings indicate that EJE can alleviate inflammatory pain by inhibiting p38 and JNK and by suppressing NF-ĸB via ERK/Nrf2/HO-1 signaling. Full article
(This article belongs to the Special Issue Role of Natural Antioxidants on Neuroprotection and Neuroinflammation)
Show Figures

Graphical abstract

Back to TopTop