Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Eranthis cilicica

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 14840 KiB  
Article
Karyotypes and Physical Mapping of Ribosomal DNA with Oligo-Probes in Eranthis sect. Eranthis (Ranunculaceae)
by Elizaveta Yu. Mitrenina, Svetlana S. Alekseeva, Ekaterina D. Badaeva, Lorenzo Peruzzi, Gleb N. Artemov, Denis A. Krivenko, Lorenzo Pinzani, Zeki Aytaç, Ömer Çeçen, Shukherdorj Baasanmunkh, Hyeok Jae Choi, Attila Mesterházy, Alexander N. Tashev, Svetlana Bancheva, Lian Lian, Kunli Xiang, Wei Wang and Andrey S. Erst
Plants 2024, 13(1), 47; https://doi.org/10.3390/plants13010047 - 22 Dec 2023
Cited by 3 | Viewed by 2167
Abstract
A comparative karyotype analysis of four species of yellow-flowered Eranthis sect. Eranthis, i.e., E. bulgarica, E. cilicica, E. hyemalis, and E. longistipitata from different areas, has been carried out for the first time. All the studied specimens had somatic [...] Read more.
A comparative karyotype analysis of four species of yellow-flowered Eranthis sect. Eranthis, i.e., E. bulgarica, E. cilicica, E. hyemalis, and E. longistipitata from different areas, has been carried out for the first time. All the studied specimens had somatic chromosome number 2n = 16 with basic chromosome number x = 8. Karyotypes of the investigated plants included five pairs of metacentric chromosomes and three pairs of submetacentric/subtelocentric chromosomes. The chromosome sets of the investigated species differ mainly in the ratio of submetacentric/subtelocentric chromosomes, their relative lengths, and arm ratios. A new oligonucleotide probe was developed and tested to detect 45S rDNA clusters. Using this probe and an oligonucleotide probe to 5S rDNA, 45S and 5S rDNA clusters were localized for the first time on chromosomes of E. cilicica, E. hyemalis, and E. longistipitata. Major 45S rDNA clusters were identified on satellite chromosomes in all the species; in E. cilicica, minor clusters were also identified in the terminal regions of one metacentric chromosome pair. The number and distribution of 5S rDNA clusters is more specific. In E. cilicica, two major clusters were identified in the pericentromeric region of a pair of metacentric chromosomes. Two major clusters in the pericentromeric region of a pair of submetacentric chromosomes and two major clusters in the interstitial region of a pair of metacentric chromosomes were observed in E. longistipitata. E. hyemalis has many clusters of different sizes, localized mainly in the pericentromeric regions. Summarizing new data on the karyotype structure of E. sect. Eranthis and previously obtained data on E. sect. Shibateranthis allowed conclusions to be formed about the clear interspecific karyological differences of the genus Eranthis. Full article
(This article belongs to the Special Issue Plant Molecular Cytogenetics)
Show Figures

Figure 1

12 pages, 1333 KiB  
Article
Cycloartane and Oleanane Glycosides from the Tubers of Eranthis cilicica
by Kazuki Watanabe, Yoshihiro Mimaki, Haruhiko Fukaya and Yukiko Matsuo
Molecules 2019, 24(1), 69; https://doi.org/10.3390/molecules24010069 - 25 Dec 2018
Cited by 12 | Viewed by 3540
Abstract
Phytochemical analysis of the tubers of Eranthis cilicica was performed as part of our continuous study on the plants of the family Ranunculaceae, which resulted in the isolation of eleven new cycloartane glycosides (111) and one new oleanane [...] Read more.
Phytochemical analysis of the tubers of Eranthis cilicica was performed as part of our continuous study on the plants of the family Ranunculaceae, which resulted in the isolation of eleven new cycloartane glycosides (111) and one new oleanane glycoside (13), together with one known oleanane glycoside (12). The structures of the new compounds were determined by extensive spectroscopic analysis, including two-dimensional (2D) NMR, and enzymatic hydrolysis followed by either X-ray crystallographic or chromatographic analysis. The aglycone (1a) of 2 and its C-23 epimer (8a), and the oleanane glycosides (12 and 13) showed cytotoxic activity against HL-60 leukemia cells with IC50 values ranging from 10.6 μM to 101.6 μM. HL-60 cells were much more sensitive to 8a (IC50 14.8 μM) than 1a (IC50 101.1 μM), indicating that the C-23 configuration is associated with the cytotoxicity of these cycloartane derivatives. Compound 12 was revealed so as to partially induce apoptotic cell death in HL-60 cells, as was evident from morphology of HL-60 cells treated with 12. Full article
(This article belongs to the Special Issue Natural Product Isolation, Identification and Biological Activity)
Show Figures

Graphical abstract

Back to TopTop