Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = EphA2 antagonism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2367 KB  
Article
A Pharmacological Investigation of Eph-Ephrin Antagonism in Prostate Cancer: UniPR1331 Efficacy Evidence
by Claudio Festuccia, Miriam Corrado, Alessandra Rossetti, Riccardo Castelli, Alessio Lodola, Giovanni Luca Gravina, Massimiliano Tognolini and Carmine Giorgio
Pharmaceuticals 2023, 16(10), 1452; https://doi.org/10.3390/ph16101452 - 13 Oct 2023
Cited by 1 | Viewed by 2418
Abstract
The Eph kinases are the largest receptor tyrosine kinases (RTKs) family in humans. PC3 human prostate adenocarcinoma cells are a well-established model for studying Eph–ephrin pharmacology as they naturally express a high level of EphA2, a promising target for new cancer therapies. A [...] Read more.
The Eph kinases are the largest receptor tyrosine kinases (RTKs) family in humans. PC3 human prostate adenocarcinoma cells are a well-established model for studying Eph–ephrin pharmacology as they naturally express a high level of EphA2, a promising target for new cancer therapies. A pharmacological approach with agonists did not show significant efficacy on tumor growth in prostate orthotopic murine models, but reduced distal metastasis formation. In order to improve the comprehension of the pharmacological targeting of Eph receptors in prostate cancer, in the present work, we investigated the efficacy of Eph antagonism both in vitro and in vivo, using UniPR1331, a small orally bioavailable Eph–ephrin interaction inhibitor. UniPR1331 was able to inhibit PC3 cells’ growth in vitro in a dose-dependent manner, affecting the cell cycle and inducing apoptosis. Moreover, UniPR1331 promoted the PC3 epithelial phenotype, downregulating epithelial mesenchymal transition (EMT) markers. As a consequence, UniPR1331 reduced in vitro PC3 migration, invasion, and vasculomimicry capabilities. The antitumor activity of UniPR1331 was confirmed in vivo when administered alone or in combination with cytotoxic drugs in PC3-xenograft mice. Our results demonstrated that Eph antagonism is a promising strategy for inhibiting prostate cancer growth, especially in combination with cytotoxic drugs. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

16 pages, 3629 KB  
Article
UniPR1331: Small Eph/Ephrin Antagonist Beneficial in Intestinal Inflammation by Interfering with Type-B Signaling
by Carmine Giorgio, Marika Allodi, Simone Palese, Andrea Grandi, Massimiliano Tognolini, Riccardo Castelli, Alessio Lodola, Lisa Flammini, Anna Maria Cantoni, Elisabetta Barocelli and Simona Bertoni
Pharmaceuticals 2021, 14(6), 502; https://doi.org/10.3390/ph14060502 - 24 May 2021
Cited by 3 | Viewed by 3568
Abstract
Eph receptors, comprising A and B classes, interact with cell-bound ephrins generating bidirectional signaling. Although mainly related to carcinogenesis and organogenesis, the role of Eph/ephrin system in inflammation is growingly acknowledged. Recently, we showed that EphA/ephrin-A proteins can modulate the acute inflammatory responses [...] Read more.
Eph receptors, comprising A and B classes, interact with cell-bound ephrins generating bidirectional signaling. Although mainly related to carcinogenesis and organogenesis, the role of Eph/ephrin system in inflammation is growingly acknowledged. Recently, we showed that EphA/ephrin-A proteins can modulate the acute inflammatory responses induced by mesenteric ischemia/reperfusion, while beneficial effects were granted by EphB4, acting as EphB/ephrin-B antagonist, in a murine model of Crohn’s disease (CD). Accordingly, we now aim to evaluate the effects of UniPR1331, a pan-Eph/ephrin antagonist, in TNBS-induced colitis and to ascertain whether UniPR1331 effects can be attributed to A- or B-type signaling interference. The potential anti-inflammatory action of UniPR1331 was compared to those of the recombinant proteins EphA2, a purported EphA/ephrin-A antagonist, and of ephrin-A1-Fc and EphA2-Fc, supposedly activating forward and reverse EphA/ephrin-A signaling, in murine TNBS-induced colitis and in stimulated cultured mononuclear splenocytes. UniPR1331 antagonized the inflammatory responses both in vivo, mimicking EphB4 protection, and in vitro; EphA/ephrin-A proteins were inactive or only weakly effective. Our findings represent a further proof-of-concept that blockade of EphB/ephrin-B signaling is a promising pharmacological strategy for CD management and highlight UniPR1331 as a novel drug candidate, seemingly working through the modulation of immune responses. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Graphical abstract

17 pages, 2552 KB  
Article
Analysis of ADAM12-Mediated Ephrin-A1 Cleavage and Its Biological Functions
by Katsuaki Ieguchi, Takeshi Tomita, Toshifumi Takao, Tsutomu Omori, Taishi Mishima, Isao Shimizu, Massimiliano Tognolini, Alessio Lodola, Takuya Tsunoda, Shinichi Kobayashi, Satoshi Wada and Yoshiro Maru
Int. J. Mol. Sci. 2021, 22(5), 2480; https://doi.org/10.3390/ijms22052480 - 1 Mar 2021
Cited by 15 | Viewed by 3649
Abstract
Accumulating evidence indicates that an elevated ephrin-A1 expression is positively correlated with a worse prognosis in some cancers such as colon and liver cancer. The detailed mechanism of an elevated ephrin-A1 expression in a worse prognosis still remains to be fully elucidated. We [...] Read more.
Accumulating evidence indicates that an elevated ephrin-A1 expression is positively correlated with a worse prognosis in some cancers such as colon and liver cancer. The detailed mechanism of an elevated ephrin-A1 expression in a worse prognosis still remains to be fully elucidated. We previously reported that ADAM12-cleaved ephrin-A1 enhanced lung vascular permeability and thereby induced lung metastasis. However, it is still unclear whether or not cleaved forms of ephrin-A1 are derived from primary tumors and have biological activities. We identified the ADAM12-mediated cleavage site of ephrin-A1 by a Matrix-assisted laser desorption ionization mass spectrometry and checked levels of ephrin-A1 in the serum and the urine derived from the primary tumors by using a mouse model. We found elevated levels of tumor-derived ephrin-A1 in the serum and the urine in the tumor-bearing mice. Moreover, inhibition of ADAM-mediated cleavage of ephrin-A1 or antagonization of the EphA receptors resulted in a significant reduction of lung metastasis. The results suggest that tumor-derived ephrin-A1 is not only a potential biomarker to predict lung metastasis from the primary tumor highly expressing ephrin-A1 but also a therapeutic target of lung metastasis. Full article
(This article belongs to the Special Issue Eph Receptors and Ephrins)
Show Figures

Figure 1

11 pages, 1029 KB  
Article
Evaluation of the Anti-Tumor Activity of Small Molecules Targeting Eph/Ephrins in APC min/J Mice
by Miriam Corrado, Carmine Giorgio, Elisabetta Barocelli, Giuseppe Vittucci Marzetti, Anna Maria Cantoni, Rosanna Di Lecce, Matteo Incerti, Riccardo Castelli, Alessio Lodola and Massimiliano Tognolini
Pharmaceuticals 2020, 13(4), 69; https://doi.org/10.3390/ph13040069 - 16 Apr 2020
Cited by 1 | Viewed by 3479
Abstract
The Eph receptors are the largest receptors tyrosine kinases (RTKs) family in humans and together with ephrin ligands constitute a complex cellular communication system often dysregulated in many tumors. The role of the Eph-ephrin system in colorectal cancer (CRC) has been investigated and [...] Read more.
The Eph receptors are the largest receptors tyrosine kinases (RTKs) family in humans and together with ephrin ligands constitute a complex cellular communication system often dysregulated in many tumors. The role of the Eph-ephrin system in colorectal cancer (CRC) has been investigated and different expression of Eph receptors have been associated with tumor development and progression. In light of this evidence, we investigated if a pharmacological approach aimed at inhibiting Eph/ephrin interaction through small molecules could prevent tumor growth in APC min/J mice. The 8-week treatment with the Eph-ephrin antagonist UniPR129 significantly reduced the number of adenomas in the ileum and decreased the diameter of adenomas in the same region. Overall our data suggested as UniPR129 could be able to slow down the tumor development in APC min/J mice. These results further confirm literature data about Eph kinases as a new valuable target in the intestinal cancer and for the first time showed the feasibility of the Eph-ephrin inhibition as a useful pharmacological approach against the intestinal tumorigenesis. In conclusion this work paves the way for further studies with Eph-ephrin inhibitors in order to confirm the Eph antagonism as innovative pharmacological approach with preventive benefit in the intestinal tumor development. Full article
(This article belongs to the Special Issue Targeting the Eph–ephrin System)
Show Figures

Figure 1

Back to TopTop