Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = ERELM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1405 KB  
Article
Machine Learning Algorithms and Fault Detection for Improved Belief Function Based Decision Fusion in Wireless Sensor Networks
by Atia Javaid, Nadeem Javaid, Zahid Wadud, Tanzila Saba, Osama E. Sheta, Muhammad Qaiser Saleem and Mohammad Eid Alzahrani
Sensors 2019, 19(6), 1334; https://doi.org/10.3390/s19061334 - 17 Mar 2019
Cited by 43 | Viewed by 6728
Abstract
Decision fusion is used to fuse classification results and improve the classification accuracy in order to reduce the consumption of energy and bandwidth demand for data transmission. The decentralized classification fusion problem was the reason to use the belief function-based decision fusion approach [...] Read more.
Decision fusion is used to fuse classification results and improve the classification accuracy in order to reduce the consumption of energy and bandwidth demand for data transmission. The decentralized classification fusion problem was the reason to use the belief function-based decision fusion approach in Wireless Sensor Networks (WSNs). With the consideration of improving the belief function fusion approach, we have proposed four classification techniques, namely Enhanced K-Nearest Neighbor (EKNN), Enhanced Extreme Learning Machine (EELM), Enhanced Support Vector Machine (ESVM), and Enhanced Recurrent Extreme Learning Machine (ERELM). In addition, WSNs are prone to errors and faults because of their different software, hardware failures, and their deployment in diverse fields. Because of these challenges, efficient fault detection methods must be used to detect faults in a WSN in a timely manner. We have induced four types of faults: offset fault, gain fault, stuck-at fault, and out of bounds fault, and used enhanced classification methods to solve the sensor failure issues. Experimental results show that ERELM gave the first best result for the improvement of the belief function fusion approach. The other three proposed techniques ESVM, EELM, and EKNN provided the second, third, and fourth best results, respectively. The proposed enhanced classifiers are used for fault detection and are evaluated using three performance metrics, i.e., Detection Accuracy (DA), True Positive Rate (TPR), and Error Rate (ER). Simulations show that the proposed methods outperform the existing techniques and give better results for the belief function and fault detection in WSNs. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

30 pages, 2963 KB  
Article
Short-Term Electric Load and Price Forecasting Using Enhanced Extreme Learning Machine Optimization in Smart Grids
by Aqdas Naz, Muhammad Umar Javed, Nadeem Javaid, Tanzila Saba, Musaed Alhussein and Khursheed Aurangzeb
Energies 2019, 12(5), 866; https://doi.org/10.3390/en12050866 - 5 Mar 2019
Cited by 79 | Viewed by 7666
Abstract
A Smart Grid (SG) is a modernized grid to provide efficient, reliable and economic energy to the consumers. Energy is the most important resource in the world. An efficient energy distribution is required as smart devices are increasing dramatically. The forecasting of electricity [...] Read more.
A Smart Grid (SG) is a modernized grid to provide efficient, reliable and economic energy to the consumers. Energy is the most important resource in the world. An efficient energy distribution is required as smart devices are increasing dramatically. The forecasting of electricity consumption is supposed to be a major constituent to enhance the performance of SG. Various learning algorithms have been proposed to solve the forecasting problem. The sole purpose of this work is to predict the price and load efficiently. The first technique is Enhanced Logistic Regression (ELR) and the second technique is Enhanced Recurrent Extreme Learning Machine (ERELM). ELR is an enhanced form of Logistic Regression (LR), whereas, ERELM optimizes weights and biases using a Grey Wolf Optimizer (GWO). Classification and Regression Tree (CART), Relief-F and Recursive Feature Elimination (RFE) are used for feature selection and extraction. On the basis of selected features, classification is performed using ELR. Cross validation is done for ERELM using Monte Carlo and K-Fold methods. The simulations are performed on two different datasets. The first dataset, i.e., UMass Electric Dataset is multi-variate while the second dataset, i.e., UCI Dataset is uni-variate. The first proposed model performed better with UMass Electric Dataset than UCI Dataset and the accuracy of second model is better with UCI than UMass. The prediction accuracy is analyzed on the basis of four different performance metrics: Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), Mean Square Error (MSE) and Root Mean Square Error (RMSE). The proposed techniques are then compared with four benchmark schemes. The comparison is done to verify the adaptivity of the proposed techniques. The simulation results show that the proposed techniques outperformed benchmark schemes. The proposed techniques efficiently increased the prediction accuracy of load and price. However, the computational time is increased in both scenarios. ELR achieved almost 5% better results than Convolutional Neural Network (CNN) and almost 3% than LR. While, ERELM achieved almost 6% better results than ELM and almost 5% than RELM. However, the computational time is almost 20% increased with ELR and 50% with ERELM. Scalability is also addressed for the proposed techniques using half-yearly and yearly datasets. Simulation results show that ELR gives 5% better results while, ERELM gives 6% better results when used for yearly dataset. Full article
Show Figures

Figure 1

Back to TopTop