Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = E-bike pedaling power

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 947 KiB  
Article
Examining the Efficiency of Electric-Assisted Mountain Biking across Different Types of Terrain
by Samo Rauter, Matej Supej and Janez Vodičar
Appl. Sci. 2023, 13(21), 11677; https://doi.org/10.3390/app132111677 - 25 Oct 2023
Viewed by 1785
Abstract
Mountain bikes with electric assistance (e-bikes) have gained popularity recently by allowing riders to increase their pedaling power through an electric motor. This innovation has raised questions about how e-bikes compare to traditional mountain bikes regarding physical effort, speed, and physiological demands. By [...] Read more.
Mountain bikes with electric assistance (e-bikes) have gained popularity recently by allowing riders to increase their pedaling power through an electric motor. This innovation has raised questions about how e-bikes compare to traditional mountain bikes regarding physical effort, speed, and physiological demands. By examining these factors, the study aims to compare and characterize differences in performance-related parameters when using an electric-assisted mountain bike compared to a conventional mountain bike on different types of terrain (uphill, downhill, flat section, technically demanding terrain) concerning power output, velocity, cardiorespiratory parameters, and energy expenditure. Six experienced mountain bikers (mean age: 44.6 ± 6.4 years, mean body height: 173.3 ± 5.6 cm, mean body weight: 70.6 ± 4.9 kg) cycled 4.5 km on varying off-road terrain at their own race pace, once with and once without electrical assistance, in randomized order. The results of the study indicate significantly faster (24.3 ± 1.85 to 17.2 ± 1.22 km/h (p < 0.001)) cycling on an electric-assisted mountain bike, which reduces cardiorespiratory parameters and metabolic effort as well as results in less demanding workload (138.5 ± 31.8 W) during the cycling with an electric-assisted mountain bike in comparison to a conventional mountain bike (217.5 ± 24.3 W (p < 0.001)). The results indicate significant differences especially when riding uphill. The performance advantage of an electrically assisted mountain bike diminishes compared to a conventional mountain bike on downhill, flat, or technically challenging terrain. The highlighted advantages of electric-assisted mountain bikes could represent a novel strategy for cycling in different terrains to optimize efficiency. Full article
(This article belongs to the Section Applied Biosciences and Bioengineering)
Show Figures

Figure 1

29 pages, 12405 KiB  
Article
Torque Measurement and Control for Electric-Assisted Bike Considering Different External Load Conditions
by Ping-Jui Ho, Chen-Pei Yi, Yi-Jen Lin, Wei-Der Chung, Po-Huan Chou and Shih-Chin Yang
Sensors 2023, 23(10), 4657; https://doi.org/10.3390/s23104657 - 11 May 2023
Cited by 10 | Viewed by 6247
Abstract
This paper proposes a novel torque measurement and control technique for cycling-assisted electric bikes (E-bikes) considering various external load conditions. For assisted E-bikes, the electromagnetic torque from the permanent magnet (PM) motor can be controlled to reduce the pedaling torque generated by the [...] Read more.
This paper proposes a novel torque measurement and control technique for cycling-assisted electric bikes (E-bikes) considering various external load conditions. For assisted E-bikes, the electromagnetic torque from the permanent magnet (PM) motor can be controlled to reduce the pedaling torque generated by the human rider. However, the overall cycling torque is affected by external loads, including the cyclist’s weight, wind resistance, rolling resistance, and the road slope. With knowledge of these external loads, the motor torque can be adaptively controlled for these riding conditions. In this paper, key E-bike riding parameters are analyzed to find a suitable assisted motor torque. Four different motor torque control methods are proposed to improve the E-bike’s dynamic response with minimal variation in acceleration. It is concluded that the wheel acceleration is important to determine the E-bike’s synergetic torque performance. A comprehensive E-bike simulation environment is developed with MATLAB/Simulink to evaluate these adaptive torque control methods. In this paper, an integrated E-bike sensor hardware system is built to verify the proposed adaptive torque control. Full article
Show Figures

Figure 1

34 pages, 2862 KiB  
Review
E-Bike Motor Drive: A Review of Configurations and Capabilities
by Chiara Contò and Nicola Bianchi
Energies 2023, 16(1), 160; https://doi.org/10.3390/en16010160 - 23 Dec 2022
Cited by 37 | Viewed by 15165
Abstract
In recent years, the mobility sector is undergoing a revolution, which is resulting also into a worldwide spread of light electric vehicles, such as electric scooters and bicycles. The increasing public concern about environmental problems further feeds this revolution. Electric-bicycles (or e-bikes) are [...] Read more.
In recent years, the mobility sector is undergoing a revolution, which is resulting also into a worldwide spread of light electric vehicles, such as electric scooters and bicycles. The increasing public concern about environmental problems further feeds this revolution. Electric-bicycles (or e-bikes) are a new trend which fits different riders’ needs. In fact, they offer extended range and ease of use, allowing riders to travel in urban centres, but also to take longer trips. E–bikes are reliable, easy to ride, affordable, and they help people live and travel a little greener, with a great benefit for their health. Many Companies (such as Brose, Bafang, Bosch and Shimano) developed performing e-bike motor drives. However, there is not a detailed general procedure to help the choice and design of electric bikes, in particular concerning the electric machine. This review focuses on the analysis of different motors for e-bike application. First, the e-bike system state of art is presented. The pedal-assist and power-on-demand e-bike system typologies are presented, together with the most popular parallel configuration and the less common series configuration. Further on, the environmental resistances are analysed for a traditional bicycle system and then the force balance is extended to the electric vehicle example. The most common Lithium-ion battery and the battery management system state of art is discussed, presenting design schemes and typical performances. Concerning the electrical machine, some electromagnetic design approaches are described, together with some data on commercial motors. Finite element analysis of a common motor model is carried out and some experimental tests are presented to highlight their capabilities. Different control strategies are compared, including innovative solutions and new trends. Full article
Show Figures

Figure 1

Back to TopTop