error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Dirac–Brueckner–Hartree–Fock approach

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 587 KB  
Article
A Modern View of the Equation of State in Nuclear and Neutron Star Matter
by G. Fiorella Burgio, Hans-Josef Schulze, Isaac Vidaña and Jin-Biao Wei
Symmetry 2021, 13(3), 400; https://doi.org/10.3390/sym13030400 - 28 Feb 2021
Cited by 20 | Viewed by 5496
Abstract
Background: We analyze several constraints on the nuclear equation of state (EOS) currently available from neutron star (NS) observations and laboratory experiments and study the existence of possible correlations among properties of nuclear matter at saturation density with NS observables. Methods: We use [...] Read more.
Background: We analyze several constraints on the nuclear equation of state (EOS) currently available from neutron star (NS) observations and laboratory experiments and study the existence of possible correlations among properties of nuclear matter at saturation density with NS observables. Methods: We use a set of different models that include several phenomenological EOSs based on Skyrme and relativistic mean field models as well as microscopic calculations based on different many-body approaches, i.e., the (Dirac–)Brueckner–Hartree–Fock theories, Quantum Monte Carlo techniques, and the variational method. Results: We find that almost all the models considered are compatible with the laboratory constraints of the nuclear matter properties as well as with the largest NS mass observed up to now, 2.140.09+0.10M for the object PSR J0740+6620, and with the upper limit of the maximum mass of about 2.3–2.5M deduced from the analysis of the GW170817 NS merger event. Conclusion: Our study shows that whereas no correlation exists between the tidal deformability and the value of the nuclear symmetry energy at saturation for any value of the NS mass, very weak correlations seem to exist with the derivative of the nuclear symmetry energy and with the nuclear incompressibility. Full article
(This article belongs to the Special Issue The Nuclear Physics of Neutron Stars)
Show Figures

Figure 1

29 pages, 4496 KB  
Review
Recent Advances in Microscopic Approaches to Nuclear Matter and Symmetry Energy
by Francesca Sammarruca
Symmetry 2014, 6(4), 851-879; https://doi.org/10.3390/sym6040851 - 20 Oct 2014
Cited by 7 | Viewed by 6459
Abstract
Nuclear matter is a convenient theoretical laboratory to test many-body theories. When neutron and proton densities are different, the isospin dependence of the nuclear force gives rise to the symmetry energy term in the equation of state. This quantity is a crucial mechanism [...] Read more.
Nuclear matter is a convenient theoretical laboratory to test many-body theories. When neutron and proton densities are different, the isospin dependence of the nuclear force gives rise to the symmetry energy term in the equation of state. This quantity is a crucial mechanism in the formation of the neutron skin in nuclei, as well as in other systems and phenomena involved in the dynamics of neutrons and protons in neutron-rich systems, such as isospin-asymmetric heavy-ion collisions. In this article, we will review phenomenological facts about the symmetry energy and recent experimental efforts to constrain its density dependence and related quantities. We will then review our microscopic approach to the equation of state of symmetric and asymmetric nuclear matter and present a corresponding set of predictions. Our calculations utilize the Dirac–Brueckner–Hartree–Fock method and realistic meson-theoretic nucleon-nucleon potentials. Chiral perturbation theory is an alternative approach, based on a well-defined scheme, which allows one to develop nuclear forces at each order of the chiral expansion. We will present and discuss predictions based on chiral perturbation theory, where we employ consistent two- and three-body chiral interactions. Throughout the article, one of the focal points is the importance of pursuing ab initio methods towards a deeper understanding of the many-body system. Full article
(This article belongs to the Special Issue Nuclear Symmetry Energy)
Show Figures

Back to TopTop