Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Diospyros lotus L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1608 KiB  
Article
Enhanced Antioxidant and Anti-Inflammatory Activities of Diospyros lotus Leaf Extract via Enzymatic Conversion of Rutin to Isoquercitrin
by Yeong-Su Kim, Chae Sun Na and Kyung-Chul Shin
Antioxidants 2025, 14(8), 950; https://doi.org/10.3390/antiox14080950 - 2 Aug 2025
Viewed by 174
Abstract
Isoquercitrin, a monoglucoside form of quercetin, exhibits superior antioxidant, anti-inflammatory, and cardiovascular protective effects in comparison to its precursor, rutin. However, its natural abundance is limited. This study aimed to increase the functional value of Diospyros lotus leaf extract through enzymatic conversion of [...] Read more.
Isoquercitrin, a monoglucoside form of quercetin, exhibits superior antioxidant, anti-inflammatory, and cardiovascular protective effects in comparison to its precursor, rutin. However, its natural abundance is limited. This study aimed to increase the functional value of Diospyros lotus leaf extract through enzymatic conversion of rutin to isoquercitrin using α-l-rhamnosidase and to evaluate the changes in biological activities after conversion. A sugar-free D. lotus leaf extract was prepared and subjected to enzymatic hydrolysis with α-l-rhamnosidase under optimized conditions (pH 5.5, 55 °C, and 0.6 U/mL). Isoquercitrin production was monitored via high-performance liquid chromatography. Antioxidant and anti-inflammatory activities were assessed using the 2,2-diphenyl-1-picrylhydrazyl radical scavenging and lipoxygenase (LOX) inhibition assays, respectively. The enzymatic reaction resulted in complete conversion of 30 mM rutin into isoquercitrin within 180 min, increasing isoquercitrin content from 9.8 to 39.8 mM. The enzyme-converted extract exhibited significantly enhanced antioxidant activity, with a 48% improvement in IC50 value compared with the untreated extract. Similarly, LOX inhibition increased from 39.2% to 48.3% after enzymatic conversion. Both extracts showed higher inhibition than isoquercitrin alone, indicating synergistic effects of other phytochemicals present in the extract. This study is the first to demonstrate that α-l-rhamnosidase-mediated conversion of rutin to isoquercitrin in D. lotus leaf extract significantly improves its antioxidant and anti-inflammatory activities. The enzymatically enhanced extract shows potential as a functional food or therapeutic ingredient. Full article
Show Figures

Figure 1

13 pages, 3533 KiB  
Article
Low-Molecular-Weight Organic Acid as an Alternative to Promote the Rooting of Persimmon Rootstock Shoot Cuttings
by Jingjing Geng, Chi Zhang, Shaoning Deng, Bowei Liu, Mengye Cheng, Xiuhong An, Hongxia Wang and Wenjiang Wang
Plants 2024, 13(23), 3440; https://doi.org/10.3390/plants13233440 - 8 Dec 2024
Viewed by 996
Abstract
Organic acids are naturally present in plants and exert a positive influence on plant development, which justifies surveying their potential effect on adventitious root (AR) formation. In this study, 0.0298 mol/L (4000 mg/L) of malic acid and 0.0267 mol/L (4000 mg/L) of tartaric [...] Read more.
Organic acids are naturally present in plants and exert a positive influence on plant development, which justifies surveying their potential effect on adventitious root (AR) formation. In this study, 0.0298 mol/L (4000 mg/L) of malic acid and 0.0267 mol/L (4000 mg/L) of tartaric acid were used to explore the effects of low-molecular-weight organic acid on the rooting of persimmon rootstock Diospyros lotus L. during cutting propagation. After organic acid treatment, the rooting percentage and the survival rate significantly increased, accompanied by a greater development of lateral roots. Anatomical analysis revealed that Diospyros lotus L. exhibits characteristics that induce root primordia, and organic acid treatment can enhance the differentiation of root primordia. Furthermore, treatment with organic acid led to a substantial decrease in soluble sugar and starch contents, along with a slight increase in soluble protein content during early cutting stages. Additionally, the indole-3-acetic acid (IAA) content peaked in the early stages of AR formation and was significantly higher than that of the control, while abscisic acid (ABA) levels exhibited the opposite trend. Comparatively, gibberellic acid (GA3) remained at extremely low levels throughout the rooting process in the organic acid groups compared to the control. In conclusion, the current study uncovers the anatomical structure over time during AR formation, revealing the dynamic changes in the related main nutrients and hormones and providing new ideas and a new practical approach for improving root regeneration in persimmon rootstock cuttings. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

12 pages, 3147 KiB  
Article
Osteogenic Effects of the Diospyros lotus L. Leaf Extract on MC3T3-E1 Pre-Osteoblasts and Ovariectomized Mice via BMP2/4 and TGF β Pathways
by Soyeon Hong, Nadzeya Lazerka, Byeong Jun Jeon, Jeong Do Kim, Saruul Erdenebileg, Chu Won Nho and Gyhye Yoo
Nutrients 2024, 16(8), 1247; https://doi.org/10.3390/nu16081247 - 22 Apr 2024
Cited by 4 | Viewed by 2045
Abstract
Osteoporosis, a disease defined by the primary bone strength due to a low bone mineral density, is a bone disorder associated with increased mortality in the older adult population. Osteoporosis is mainly treated via hormone replacement therapy, bisphosphates, and anti-bone resorption agents. However, [...] Read more.
Osteoporosis, a disease defined by the primary bone strength due to a low bone mineral density, is a bone disorder associated with increased mortality in the older adult population. Osteoporosis is mainly treated via hormone replacement therapy, bisphosphates, and anti-bone resorption agents. However, these agents exert severe side effects, necessitating the development of novel therapeutic agents. Many studies are focusing on osteogenic agents as they increase the bone density, which is essential for osteoporosis treatment. Here, we aimed to investigate the effects of Diospyros lotus L. leaf extract (DLE) and its components on osteoporosis in MC3T3-E1 pre-osteoblasts and ovariectomized mice and to elucidate the underlying related pathways. DLE enhanced the differentiation of MC3T3-E1 pre-osteoblasts, with a 1.5-fold elevation in ALP activity, and increased the levels of osteogenic molecules, RUNX family transcription factor 2, and osterix. This alteration resulted from the activation of bone morphogenic protein 2/4 (BMP2/4) and transformation of growth factor β (TGF β) pathways. In ovariectomized mice, DLE suppressed the decrease in bone mineral density by 50% and improved the expression of other bone markers, which was confirmed by the 3~40-fold increase in osteogenic proteins and mRNA expression levels in bone marrow cells. The three major compounds identified in DLE exhibited osteogenic and estrogenic activities with their aglycones, as previously reported. Among the major compounds, myricitrin alone was not as strong as whole DLE with all its constituents. The osteogenic activity of DLE was partially suppressed by the inhibitor of estrogen signaling, indicating that the estrogenic activity of DLE participated in its osteogenic activity. Overall, DLE suppresses osteoporosis by inducing osteoblast differentiation. Full article
(This article belongs to the Special Issue Plant Derivatives and Bioactive Food Components for Health Promotion)
Show Figures

Graphical abstract

16 pages, 6184 KiB  
Article
Establishment of a Highly Efficient In Vitro Propagation System of Diospyros lotus
by Yang Liu, Xiaoyu Lu, Hui Zhang, Shuzhan Li and Ze Li
Forests 2023, 14(2), 366; https://doi.org/10.3390/f14020366 - 11 Feb 2023
Cited by 4 | Viewed by 2969
Abstract
Persimmon (Diospyros) is an economically important tree widely cultivated for woody grain production in China, and Diospyros lotus is mainly used as the grafting stock of persimmon. However, the breeding of stress-resistant rootstocks of D. lotus using molecular means has yet [...] Read more.
Persimmon (Diospyros) is an economically important tree widely cultivated for woody grain production in China, and Diospyros lotus is mainly used as the grafting stock of persimmon. However, the breeding of stress-resistant rootstocks of D. lotus using molecular means has yet to be achieved; in particular, an efficient blade-regeneration system has not been perfected to date. This study examined the effects of different plant-growth regulators and concentrations on the primary culture of stems with buds, the induction of leaf callus, the differentiation of adventitious shoots, and rooting culture of D. lotus. The optimal formula for inducing axillary buds from stems with buds was 1/2 Murashige and Skoog (MS) medium containing 2.0 mg/L 6-benzylaminopurine (6-BA) and 0.5 mg/L naphthaleneacetic acid (NAA), in which the induction rate of axillary buds approached 67.1%. The best medium formula for leaf callus induction was 1/2 MS medium containing 2.0 mg/L 6-BA and 0.5 mg/L NAA. Then callus was transferred to 1/2 MS medium containing 2.0 mg/L 6-(γ,γ-dimethylallylamino)purine (2iP), 2.0 mg/L thidizuron (TDZ), and 40 g/L sucrose to induce adventitious shoots after dark culture for 48 h, resulting in 7.9 shoots per explant and a 75.2% induction frequency of adventitious shoots. In addition, it was difficult to induce adventitious shoots from callus after six times of continuous transfer and differentiation. The adventitious shoots were transferred to 1/2 MS medium containing 2.0 mg/L zeatin (ZT) and 2.0 mg/L 2iP for proliferation culture, in which the multiplication coefficient approached 7.6. The adventitious shoots after multiplication were inoculated into 1/2 MS + 1.0 mg/L IBA + 0.5 mg/L NAA medium, the rooting rate was 70.2%, and the average number of heels was 9.6. Thus, studies in this area are expected to facilitate rapid and excellent growth, as well as theoretical support for factory saplings’ care and molecular breeding. Full article
(This article belongs to the Special Issue Non-timber Forestry Breeding, Cultivation and Processing Technology)
Show Figures

Figure 1

19 pages, 3577 KiB  
Article
Transcriptomic Analysis Reveals Salt Tolerance Mechanisms Present in Date-Plum Persimmon Rootstock (Diospyros lotus L.)
by Francisco Gil-Muñoz, Nicolas Delhomme, Ana Quiñones, Maria del Mar Naval, Maria Luisa Badenes and M. Rosario García-Gil
Agronomy 2020, 10(11), 1703; https://doi.org/10.3390/agronomy10111703 - 3 Nov 2020
Cited by 2 | Viewed by 3237
Abstract
Agriculture needs solutions for adapting crops to increasing salinity globally. Research on physiological and molecular responses activated by salinity is needed to elucidate mechanisms of salinity tolerance. Transcriptome profiling (RNA-Seq) is a powerful tool to study the transcriptomic profile of genotypes under stress [...] Read more.
Agriculture needs solutions for adapting crops to increasing salinity globally. Research on physiological and molecular responses activated by salinity is needed to elucidate mechanisms of salinity tolerance. Transcriptome profiling (RNA-Seq) is a powerful tool to study the transcriptomic profile of genotypes under stress conditions. Persimmon species have different levels of tolerance to salinity, this variability may provide knowledge on persimmon species and development of salt--tolerant rootstocks. In this study, we conducted a physiological and transcriptomic profiling of roots and leaves in tolerant and sensitive plants of persimmon rootstock grown under saline and control conditions. Characterization of physiological responses along with gene expression changes in roots and leaves allowed the identification of several salt tolerance mechanisms related to ion transport and thermospermine synthesis. Differences were observed in putative H+/ATPases that allow transmembrane ionic transport and chloride channel protein-like genes. Furthermore, an overexpression of thermospermine synthase found in the roots of tolerant plants may indicate that alterations in root architecture could act as an additional mechanism of response to salt stress. These results indicate that Diospyros lotus L. exhibits genetically-controlled variability for salt tolerance traits which opens potential opportunities for breeding salt-tolerant persimmon rootstocks in a Mediterranean environment challenged by drought and salinity. Full article
(This article belongs to the Special Issue Mineral Nutrition of Fruit Trees)
Show Figures

Graphical abstract

Back to TopTop