Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Dioryctria sylvestrella

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 27621 KiB  
Article
Exploration of the Effects of Different Beauveria bassiana Strains on Dioryctria sylvestrella Larvae from the Perspective of Oxidative Stress
by Ruting Chen, Meiling Wang, Hanwen Zhang, Jianjiao Xu, Xiaomei Wang, Defu Chi and Jia Yu
Insects 2025, 16(6), 640; https://doi.org/10.3390/insects16060640 - 18 Jun 2025
Viewed by 622
Abstract
(1) Background: The larvae of Dioryctria sylvestrella typically bore into the shoots and cones of Pinus koraiensis, increasing tree breakage risk and reducing cone yield. (2) Methods: Five Beauveria bassiana strains were evaluated for virulence against fourth-instar larvae. And the levels of [...] Read more.
(1) Background: The larvae of Dioryctria sylvestrella typically bore into the shoots and cones of Pinus koraiensis, increasing tree breakage risk and reducing cone yield. (2) Methods: Five Beauveria bassiana strains were evaluated for virulence against fourth-instar larvae. And the levels of T-AOC and MDA in the larvae infected by each strain were measured. To assess larval responses to different strains, we measured the activities of six enzymes (SOD, CAT, POD, PPO, CarE, GST) and the levels of GSH and H2O2 in larvae treated with each strain. Additionally, the infection process of highly pathogenic B. bassiana in larvae was explored using scanning electron microscopy (SEM). (3) Results: Strain CGMCC3.2055 demonstrated the highest toxicity to larvae, achieving a cumulative corrected mortality of 80.56% on the 4th day and an LT50 of 3.248 days. The T-AOC of larvae treated with strain CGMCC3.2055 was inhibited within 48 h. The relative MDA content in this group was significantly higher than that in other strain-treated groups at 6, 12, and 24 h. In Bb01-treated larvae, H2O2 accumulation at 6 and 24 h post-infection was influenced by POD activity rather than GSH levels; in BbZ1-treated larvae, the activities of CAT and POD were upregulated at 6 and 36 h, while the activity of SOD was downregulated, but the content of H2O2 increased significantly, resulting in accumulation; in CFCC81428-treated larvae, a decline in T-AOC coincided with substantial H2O2 accumulation over 48 h, while a concomitant increase in GSH content bolstered tolerance to lethal oxidative damage; in CGMCC3.2055-treated larvae, H2O2 only accumulated significantly at 24 and 48 h, yet upregulated CAT and POD were insufficient to effectively scavenge the excess H2O2; and in bio-21738-treated larvae, SOD-driven dismutation generated substantial H2O2 from 12 to 48 h, leading to pronounced accumulation from 6 to 48 h, yet limited upregulation of POD (only at 6 and 12 h) and CAT (only at 12 and 48 h) were insufficient to mitigate H2O2 buildup. PPO activity was upregulated within 48 h in all treatment groups except for BbZ1, where no upregulation was observed at 12 and 48 h. GST activity was upregulated in all treatment groups except for CGMCC3.2055, where a downregulation was observed at 12 h post-infection. CarE activity was significantly upregulated within 48 h in both CFCC81428 and CGMCC3.2055 groups; in the Bb01 group, CarE was upregulated only at 6 and 48 h; in the BbZ1 group, CarE was downregulated only at 48 h; and in the bio-21738 group, CarE showed no upregulation at 24 and 48 h. Through SEM, the infection process of the strain CGMCC3.2055 on the surface of the larvae was further determined, which mainly included adhesion, the appearance of bud-like protrusions, the growth of germ tubes along the epidermis and penetration of the epidermis, as well as the colonization of the strain and its emergence from the surface of the larvae. (4) Conclusions: This study first screened the highly pathogenic B. bassiana strain CGMCC3.2055 by evaluating its virulence to larvae and post-infection T-AOC and MDA levels. It also clarified the strain’s infection process and the larvae’s immune responses to various strains. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

15 pages, 5015 KiB  
Article
An Examination of the Antennal Sensilla of the Oligophagous Moth Species Dioryctria sylvestrella (Lepidoptera: Pyralidae)
by Qi Wang, Yujia Ma, Dun Jiang and Shanchun Yan
Forests 2024, 15(9), 1586; https://doi.org/10.3390/f15091586 - 10 Sep 2024
Viewed by 1061
Abstract
Dioryctria sylvestrella (Lepidoptera: Pyralidae) is a destructive borer pest on Korean pine (Pinus koraiensis) indigenous to northeastern China. The antennal sensilla of D. sylvestrella were examined by scanning electron microscopy to understand the behavioral ecology of this insect pest. Both the [...] Read more.
Dioryctria sylvestrella (Lepidoptera: Pyralidae) is a destructive borer pest on Korean pine (Pinus koraiensis) indigenous to northeastern China. The antennal sensilla of D. sylvestrella were examined by scanning electron microscopy to understand the behavioral ecology of this insect pest. Both the male and female antennae are filiform, and each consists of a scape, a pedicel, and a flagellum. D. sylvestrella is characterized by sexual dimorphism. Only the male antennae present two deeply grooved thumblike protuberances on the crest surfaces of their fourth and fifth flagellomeres, respectively. These structures have never been reported for any other Pyralidae. Eight different types of sensilla with unique bioecological functions were detected on the antennae of both sexes. There may be structure–location–function relationships for these sensilla, and most of them are involved in communication between the insect and the host plant, mate detection, and oviposition site selection. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

14 pages, 2648 KiB  
Article
Preliminary Analysis of Transcriptome Response of Dioryctria sylvestrella (Lepidoptera: Pyralidae) Larvae Infected with Beauveria bassiana under Short-Term Starvation
by Hongru Guo, Niya Jia, Huanwen Chen, Dan Xie and Defu Chi
Insects 2023, 14(5), 409; https://doi.org/10.3390/insects14050409 - 25 Apr 2023
Cited by 1 | Viewed by 2241
Abstract
The Dioryctria genus contains several destructive borer pests that are found in coniferous forests in the Northern Hemisphere. Beauveria bassiana spore powder was tested as a new method of pest control. In this study, Dioryctria sylvestrella (Lepidoptera: Pyralidae) was used as the object. [...] Read more.
The Dioryctria genus contains several destructive borer pests that are found in coniferous forests in the Northern Hemisphere. Beauveria bassiana spore powder was tested as a new method of pest control. In this study, Dioryctria sylvestrella (Lepidoptera: Pyralidae) was used as the object. A transcriptome analysis was performed on a freshly caught group, a fasting treatment control group, and a treatment group inoculated with a wild B. bassiana strain, SBM-03. Under the conditions of 72-h fasting and a low temperature of 16 ± 1 °C, (i) in the control group, 13,135 of 16,969 genes were downregulated. However, in the treatment group, 14,558 of 16,665 genes were upregulated. (ii) In the control group, the expression of most genes in the upstream and midstream of the Toll and IMD pathways was downregulated, but 13 of the 21 antimicrobial peptides were still upregulated. In the treatment group, the gene expression of almost all antimicrobial peptides was increased. Several AMPs, including cecropin, gloverin, and gallerimycin, may have a specific inhibitory effect on B. bassiana. (iii) In the treatment group, one gene in the glutathione S-transferase system and four genes in the cytochrome P450 enzyme family were upregulated, with a sharp rise in those that were upregulated significantly. In addition, most genes of the peroxidase and catalase families, but none of the superoxide dismutase family were upregulated significantly. Through innovative fasting and lower temperature control, we have a certain understanding of the specific defense mechanism by which D. sylvestrella larvae may resist B. bassiana in the pre-wintering period. This study paves the way for improving the toxicity of B. bassiana to Dioryctria spp. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

Back to TopTop