Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Dianchi Lake watershed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 31104 KiB  
Article
Modeling and Assessment of Landslide Susceptibility of Dianchi Lake Watershed in Yunnan Plateau
by Guangshun Bai, Xuemei Yang, Zhigang Kong, Jieyong Zhu, Shitao Zhang and Bin Sun
Sustainability 2023, 15(21), 15221; https://doi.org/10.3390/su152115221 - 24 Oct 2023
Cited by 2 | Viewed by 1484
Abstract
The nine plateau lake watersheds in Yunnan are important ecological security barriers in the southwest of China. The prevention and control of landslides are important considerations in the management of these watersheds. Taking the Dianchi Lake watershed as a typical research area, a [...] Read more.
The nine plateau lake watersheds in Yunnan are important ecological security barriers in the southwest of China. The prevention and control of landslides are important considerations in the management of these watersheds. Taking the Dianchi Lake watershed as a typical research area, a comprehensive modeling and assessment process of landslide susceptibility was put forward. The comprehensive process was based on the weight of evidence (WoE) method, and many statistical techniques were integrated, such as cross-validation, multi-quantile cumulative Student’s comprehensive weight statistics, independence testing, step-by-step modeling, ROC analysis, and ROC-based susceptibility zoning. In this paper, fourteen models with high accuracy and validity were established, and the AUC reached 0.83–0.87 and 0.85–0.88, respectively. In addition, according to the susceptibility zoning map compiled via the optimal model, 80% of landslides can be predicted in the very-high- and high-susceptibility areas, which only account for 19.58% of the study area. Finally, this paper puts forward strategies for geological disaster prevention and ecological restoration deployment. Full article
(This article belongs to the Topic Environmental Geology and Engineering)
Show Figures

Figure 1

18 pages, 1752 KiB  
Article
A Study on the Rationality of Land Use Change in the Dianchi Basin during the Last 40 Years under the Background of Lake Revolution
by Qiuju Wu, Renyi Yang and Zisheng Yang
Sustainability 2022, 14(18), 11479; https://doi.org/10.3390/su141811479 - 13 Sep 2022
Cited by 15 | Viewed by 1992
Abstract
(1) Background: Dianchi Lake is the largest freshwater plateau lake in southwest China. Since the 1970s, with the large-scale lake reclamation and rapid urbanization, the land use/cover of the Dianchi Basin has changed dramatically, directly hindering the sustainable development of the watershed. It [...] Read more.
(1) Background: Dianchi Lake is the largest freshwater plateau lake in southwest China. Since the 1970s, with the large-scale lake reclamation and rapid urbanization, the land use/cover of the Dianchi Basin has changed dramatically, directly hindering the sustainable development of the watershed. It is urgent to study the rationality of land use change in order to promote the “win-win” of eco-environment protection and sustainable economic and social development in Dianchi Basin. (2) Methods: The rationality judgment criteria of land use change in Dianchi Basin was constructed from ecological values, land suitability, laws and regulations, and the rationality of land use change in the Dianchi Basin from 1980 to 2020 was evaluated. (3) Results: The rational degree of land use change in the Dianchi Basin was 71.76%, and the level of rationality was low rationality. The rational degree of change in cultivated land, woodland, grassland, water area and construction land was 74.41%, 69.11%, 77.11%, 3.07% and 98.26%, respectively. Among the irrational land changes, 86.59% of the land had changed to construction land. (4) Conclusions: The main problems of irrational land change in the Dianchi Basin are the massive reduction in high-quality cultivated land, the degradation of woodland, and the unordered expansion of construction land. In order to achieve sustainable development, it is important to protect cultivated land, woodland, grassland and lakes. Full article
(This article belongs to the Special Issue Recent Advances in Global Climate and Ecology Change)
Show Figures

Figure 1

19 pages, 4699 KiB  
Article
Simulation of Land-Use Changes Using the Partitioned ANN-CA Model and Considering the Influence of Land-Use Change Frequency
by Quanli Xu, Qing Wang, Jing Liu and Hong Liang
ISPRS Int. J. Geo-Inf. 2021, 10(5), 346; https://doi.org/10.3390/ijgi10050346 - 18 May 2021
Cited by 47 | Viewed by 4600
Abstract
Land-use change is a typical geographic evolutionary process characterized by spatial heterogeneity. As such, the driving factors, conversion rules, and rate of change vary for different regions around the world. However, most cellular automata (CA) models use the same transition rules for all [...] Read more.
Land-use change is a typical geographic evolutionary process characterized by spatial heterogeneity. As such, the driving factors, conversion rules, and rate of change vary for different regions around the world. However, most cellular automata (CA) models use the same transition rules for all cells in the model space when simulating land-use change. Thus, spatial heterogeneity change is ignored in the model, which means that these models are prone to over- or under simulation, resulting in a large deviation from reality. An effective means of accounting for the influence of spatial heterogeneity on the quality of the CA model is to establish a partitioned model based on cellular space partitioning. This study established a partitioned, dual-constrained CA model using the area-weighted frequency of land-use change (AWFLUC) to capture its spatial heterogeneity. This model was used to simulate the land-use evolution of the Dianchi Lake watershed. First, the CA space was divided into subzones using a dual-constrained spatial clustering method. Second, an artificial neural network (ANN) was used to automatically acquire conversion rules to construct an ANN-CA model of land-use change. Finally, land-use changes were simulated using the ANN-CA model based on data from 2006 to 2016, and model reliability was validated. The experimental results showed that compared with the non-partitioned CA model, the partitioned counterpart was able to improve the accuracy of land-use change simulation significantly. Furthermore, AWFLUC is an important indicator of the spatial heterogeneity of land-use change. The shapes of the division spaces were more similar to reality and the simulation accuracy was higher when AWFLUC was considered as a land-use change characteristic. Full article
Show Figures

Figure 1

16 pages, 5480 KiB  
Article
Quantification of the Coordination Degree between Dianchi Lake Protection and Watershed Social-Economic Development: A Scenario-Based Analysis
by Hansheng Kong, Yilei Lu, Xin Dong and Siyu Zeng
Sustainability 2021, 13(1), 116; https://doi.org/10.3390/su13010116 - 24 Dec 2020
Cited by 16 | Viewed by 2916
Abstract
Dianchi Lake is the largest freshwater lake on the Yunnan–Guizhou Plateau near Kunming City, China. As one of the most polluted lakes in China, although billions of U.S. dollars have been spent trying to clean it up, water pollution and eutrophication are still [...] Read more.
Dianchi Lake is the largest freshwater lake on the Yunnan–Guizhou Plateau near Kunming City, China. As one of the most polluted lakes in China, although billions of U.S. dollars have been spent trying to clean it up, water pollution and eutrophication are still a bottleneck for regional sustainable development. This research established an integrated approach for the evaluation of the coupling coordination degree to support future planning of the Dianchi Lake basin. Ten future scenarios for possible development directions of Dianchi Lake basin were designed to find the best balance between development and protection. Among these scenarios, a high protection–medium development scenario is the most suitable scenario for future development planning. To further improve the coordination degree, economic growth control and non-point source governance were the most effective and feasible approaches. Furthermore, a water quality model was used to verify the coordination degree. It was found that the high protection–medium development scenario can reach the water quality target in 2025. The coordination degree evaluation could be a practical link to help equilibrate the socio-economic development and environmental protection of the Dianchi Lake basin. Full article
Show Figures

Figure 1

19 pages, 4888 KiB  
Article
Changing Characteristics of Chlorophyll a in the Context of Internal and External Factors: A Case Study of Dianchi Lake in China
by Pengfei Hou, Yi Luo, Kun Yang, Chunxue Shang and Xiaolu Zhou
Sustainability 2019, 11(24), 7242; https://doi.org/10.3390/su11247242 - 17 Dec 2019
Cited by 11 | Viewed by 4373
Abstract
During the past 20 years, the ecological environment of Dianchi Lake has been adversely affected by climate change and human activities, which directly affected the ecosystem and biodiversity of the Dianchi Lake watershed. Analyzing the spatiotemporal variation of chlorophyll a (Chla) concentration of [...] Read more.
During the past 20 years, the ecological environment of Dianchi Lake has been adversely affected by climate change and human activities, which directly affected the ecosystem and biodiversity of the Dianchi Lake watershed. Analyzing the spatiotemporal variation of chlorophyll a (Chla) concentration of Dianchi Lake and exploring the internal and external factors effect on Chla concentration is the basis for controlling and improving the water ecological environment of Dianchi Lake, and it is also the key to prevent and control the water pollution of Dianchi Lake. In this study, the water quality of Dianchi Lake was examined using 12 water quality indicators from 10 water quality monitoring sites for the duration between 2000 to 2017. The changing characteristics of Chla in the context of internal and external factors were analyzed. The spatiotemporal evolution process of Chla concentration in the past 20 years was also evaluated. The results indicated that Chla concentration was significantly and positively correlated with the chemical oxygen demand (CODCr), the Dianchi Lake watershed gross domestic product (GDP), and the impervious surface area (ISA) of the watershed, in addition to the total phosphorus (TP), biochemical oxygen demand (BOD5), ammonia hydrogen (NH3-N), water temperature (WT), and civil vehicle ownership. Moreover, a significant and negative correlation was noticed between Dianchi Lake watershed GDP and NH3-N, BOD5, TP, total nitrogen (TN), and comprehensive nutrition state index (TLI). The Dianchi Lake population was negatively correlated with TP, TLI, and BOD5. The concentration of Chla in Dianchi Lake was affected by both internal factors, and external factors such as anthropogenic activities, the latter of which was the main cause of the continuous deterioration of the lake water quality. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Graphical abstract

23 pages, 916 KiB  
Article
Examining Land-Use/Land-Cover Change in the Lake Dianchi Watershed of the Yunnan-Guizhou Plateau of Southwest China with Remote Sensing and GIS Techniques: 1974–2008
by Yaolong Zhao, Ke Zhang, Yingchun Fu and Hong Zhang
Int. J. Environ. Res. Public Health 2012, 9(11), 3843-3865; https://doi.org/10.3390/ijerph9113843 - 24 Oct 2012
Cited by 57 | Viewed by 11231
Abstract
Monitoring land-use/land-cover change (LULCC) and exploring its mechanisms are important processes in the environmental management of a lake watershed. The purpose of this study was to examine the spatiotemporal pattern of LULCC by using multi landscape metrics in the Lake Dianchi watershed, which [...] Read more.
Monitoring land-use/land-cover change (LULCC) and exploring its mechanisms are important processes in the environmental management of a lake watershed. The purpose of this study was to examine the spatiotemporal pattern of LULCC by using multi landscape metrics in the Lake Dianchi watershed, which is located in the Yunnan-Guizhou Plateau of Southwest China. Landsat images from the years 1974, 1988, 1998, and 2008 were analyzed using geographical information system (GIS) techniques. The results reveal that land-use/land-cover has changed greatly in the watershed since 1974. This change in land use structure was embodied in the rapid increase of developed areas with a relative change rate of up to 324.4%. The increase in developed areas mainly occurred in agricultural land, especially near the shores of Lake Dianchi. The spatial pattern and structure of the change was influenced by the urban sprawl of the city of Kunming. The urban sprawl took on the typical expansion mode of cyclic structures and a jigsaw pattern and expanded to the shore of Lake Dianchi. Agricultural land changed little with respect to the structure but changed greatly in the spatial pattern. The landscape in the watershed showed a trend of fragmentation with a complex boundary. The dynamics of land-use/land-cover in the watershed correlate with land-use policies and economic development in China. Full article
Show Figures

Figure 1

Back to TopTop