Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = Delay-Multiply-and-Sum (DMAS), spatial coherence

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4455 KiB  
Article
Two-Dimensional Spatial Coherence for Ultrasonic DMAS Beamforming in Multi-Angle Plane-Wave Imaging
by Che-Chou Shen and Pei-Ying Hsieh
Appl. Sci. 2019, 9(19), 3973; https://doi.org/10.3390/app9193973 - 23 Sep 2019
Cited by 26 | Viewed by 4048
Abstract
Ultrasonic multi-angle plane-wave (PW) coherent compounding relies on delay-and-sum (DAS) beamforming of two-dimensional (2D) echo matrix in both the dimensions PW transmit angle and receiving channel to construct each image pixel. Due to the characteristics of DAS beamforming, PW coherent compounding may suffer [...] Read more.
Ultrasonic multi-angle plane-wave (PW) coherent compounding relies on delay-and-sum (DAS) beamforming of two-dimensional (2D) echo matrix in both the dimensions PW transmit angle and receiving channel to construct each image pixel. Due to the characteristics of DAS beamforming, PW coherent compounding may suffer from high image clutter when the number of transmit angles is kept low for ultrafast image acquisition. Delay-multiply-and-sum (DMAS) beamforming exploits the spatial coherence of the receiving aperture to suppress clutter interference. Previous attempts to introduce DMAS beamforming into multi-angle PW imaging has been reported but only in either dimension of the 2D echo matrix. In this study, a novel DMAS operation is proposed to extract the 2D spatial coherence of echo matrix for further improvement of image quality. The proposed 2D-DMAS method relies on a flexibly tunable p value to manipulate the signal coherence in the beamforming output. For p = 2.0 as an example, simulation results indicate that 2D-DMAS outperforms other one-dimensional DMAS methods by at least 9.3 dB in terms of ghost-artifact suppression. Experimental results also show that 2D-DMAS provides the highest improvement in lateral resolution by 32% and in image contrast by 15.6 dB relative to conventional 2D-DAS beamforming. Nonetheless, since 2D-DMAS emphasizes signal coherence more than its one-dimensional DMAS counterparts, it suffers from the most elevated speckle variation and the granular pattern in the tissue background. Full article
(This article belongs to the Special Issue Advanced Ultrasound Technology for Medical Application)
Show Figures

Figure 1

15 pages, 11941 KiB  
Article
Spatial Coherence of Backscattered Signals in Multi-Line Transmit Ultrasound Imaging and Its Effect on Short-Lag Filtered-Delay Multiply and Sum Beamforming
by Giulia Matrone and Alessandro Ramalli
Appl. Sci. 2018, 8(4), 486; https://doi.org/10.3390/app8040486 - 23 Mar 2018
Cited by 35 | Viewed by 5782
Abstract
In Multi-Line Transmission (MLT), high frame-rate ultrasound imaging is achieved by the simultaneous transmission of multiple focused beams along different directions, which unfortunately generates unwanted artifacts in the image due to inter-beam crosstalk. The Filtered-Delay Multiply and Sum (F-DMAS) beamformer, a non-linear spatial-coherence [...] Read more.
In Multi-Line Transmission (MLT), high frame-rate ultrasound imaging is achieved by the simultaneous transmission of multiple focused beams along different directions, which unfortunately generates unwanted artifacts in the image due to inter-beam crosstalk. The Filtered-Delay Multiply and Sum (F-DMAS) beamformer, a non-linear spatial-coherence (SC)-based algorithm, was demonstrated to successfully reduce such artifacts, improving the spatial resolution at the same time. In this paper, we aim to provide further insights on the working principle and performance of F-DMAS beamforming in MLT imaging. First, we carry out an analytical study to analyze the behavior and trend of backscattered signals SC in MLT images, when the number of simultaneously transmitted beams and/or their angular spacing change. We then reconsider the F-DMAS algorithm proposing the “short-lag F-DMAS” formulation, in order to limit the maximum lag of signals used for the SC computation on which the beamformer is based. Therefore, we investigate in simulations how the performance of short-lag F-DMAS varies along with the maximum lag in the different MLT configurations considered. Finally, we establish a relation between the obtained results and the signals SC trend. Full article
(This article belongs to the Special Issue Ultrasound B-mode Imaging: Beamforming and Image Formation Techniques)
Show Figures

Figure 1

Back to TopTop