Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Dalbergia oliveri

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 5589 KB  
Article
Differences in Chemical Constituents between Dalbergia oliveri Heartwood and Sapwood and Their Effect on Wood Color
by Liuming Wei, Ruoke Ma and Yunlin Fu
Molecules 2022, 27(22), 7978; https://doi.org/10.3390/molecules27227978 - 17 Nov 2022
Cited by 13 | Viewed by 2980
Abstract
The purpose of this study was to characterize and quantify the chemical constituents of heartwood and sapwood of Dalbergia oliveri extract in order to investigate the chemical components that determine the formation of heartwood’s color. In this work, the types of pigments in [...] Read more.
The purpose of this study was to characterize and quantify the chemical constituents of heartwood and sapwood of Dalbergia oliveri extract in order to investigate the chemical components that determine the formation of heartwood’s color. In this work, the types of pigments in heartwood and sapwood extract were analyzed using UV-Visible (UV) Spectrophotometer, and the main pigment components of heartwood and sapwood extract were identified and quantified using ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS). The results showed that the difference in content of the main components between heartwood and sapwood of Dalbergia oliveri was slight, and the lignin structure between heartwood and sapwood is basically identical; flavonoid pigments were found to be the primary chromophoric components of heartwood and sapwood extract. However, a total of 21 flavonoids were identified in heartwood and sapwood, of which the unique substances to heartwood were vitexin, isorhamnetin, and pelargonidin, and the content of isoliquiritigenin, formononetin, and biochanin A were 253, 37, and 583 times higher in the heartwood than in the sapwood, respectively, which could be the main pigment components affecting the significant color difference between heartwood and sapwood of Dalbergia oliveri. These results will provide a foundation for revealing the underlying mechanism of color difference between heartwood and sapwood and provide a theoretical basis for wood coloring. Full article
Show Figures

Figure 1

9 pages, 839 KB  
Communication
Synthesis of 7,2′-Dihydroxy-4′,5′-Dimethoxyisoflavanone, a Phytoestrogen with Derma Papilla Cell Proliferative Activity
by Taewoo Kim, Hyun Su Kim, Jaebong Jang, Dong-Jun Kim, Jongkook Lee, Dongjoo Lee and Seok-Ho Kim
Molecules 2022, 27(19), 6660; https://doi.org/10.3390/molecules27196660 - 7 Oct 2022
Cited by 3 | Viewed by 2305
Abstract
This paper reports a concise and scalable method for the synthesis of the phytoestrogen 7,2′-dihydroxy-4′,5′-dimethoxyisoflavanone 1 via an optimized synthetic route. Compound 1 was readily obtained in 11 steps and 11% overall yield on a gram scale from commercially available 3,4-dimethoxyphenol. The key [...] Read more.
This paper reports a concise and scalable method for the synthesis of the phytoestrogen 7,2′-dihydroxy-4′,5′-dimethoxyisoflavanone 1 via an optimized synthetic route. Compound 1 was readily obtained in 11 steps and 11% overall yield on a gram scale from commercially available 3,4-dimethoxyphenol. The key features of the synthesis include the construction of the deoxybenzoin unit through a sequence of Claisen rearrangement, oxidative cleavage, and aryllithium addition and the efficient synthesis of the isoflavanone architecture from highly functionalized 2-hydroxyketone. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

13 pages, 2888 KB  
Article
Seasonal Water Relations and Leaf Temperature in a Deciduous Dipterocarp Forest in Northeastern Thailand
by Philip W. Rundel, Kansri Boonpragob and Mark Patterson
Forests 2017, 8(10), 368; https://doi.org/10.3390/f8100368 - 28 Sep 2017
Cited by 11 | Viewed by 5974
Abstract
Deciduous dipterocarp forests across mainland Southeast Asia are dominated by two families: the Dipterocarpaceae and Fabaceae. Monsoon conditions produce strong seasonal climates with a hot dry season of 5–7 months extending from late November or early December through April or early May. Seasonal [...] Read more.
Deciduous dipterocarp forests across mainland Southeast Asia are dominated by two families: the Dipterocarpaceae and Fabaceae. Monsoon conditions produce strong seasonal climates with a hot dry season of 5–7 months extending from late November or early December through April or early May. Seasonal measurements of stomatal conductance and plant water potential found important differences between members of the two families. Despite their long dry season, Shorea siamensis and S. obtusa (Dipterocarpaceae) showed little significant patterns of seasonal change in xylem water potentials, with midday potentials never dropping below −1.3 MPa. These species present a classic example of isohydric strategies of adaptation where stomatal regulation maintains a relatively stable minimum water potential over the course of the year. However, maximum rates of stomatal conductance dropped sharply in the late dry season as the leaves heated in full sun without significant transpirational cooling, reaching as high as 44–45 °C, making them potentially sensitive to global increases in extreme temperature. The woody legumes Xylia kerrii and Dalbergia oliveri present different patterns of seasonal water relations and leaf response to high temperatures. The legumes exhibit anisohydric behavior where water potential decreases over the dry season as evaporative demand increases. Dry season midday water potentials dropped from high wet season levels to −2.4 to −3.2 MPa, moderately lowering maximum stomatal conductance. The relatively small leaflets of these legumes responded to the high temperatures of the late dry season by temporarily wilting, reducing their exposure to solar radiation and taking advantage of convective cooling. Large leaf size of dipterocarps in this community may not be an adaptive trait but rather an ancestral condition compensated for with ecophysiological adaptations. Full article
Show Figures

Figure 1

Back to TopTop