Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = DJI RC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 32760 KiB  
Article
Digital Forensic Research for Analyzing Drone Pilot: Focusing on DJI Remote Controller
by Sungwon Lee, Hyeongmin Seo and Dohyun Kim
Sensors 2023, 23(21), 8934; https://doi.org/10.3390/s23218934 - 2 Nov 2023
Cited by 3 | Viewed by 4568
Abstract
Drones, also known as unmanned aerial vehicles (UAVs) and sometimes referred to as ‘Mobile IoT’ or ‘Flying IoT’, are widely adopted worldwide, with their market share continuously increasing. While drones are generally harnessed for a wide range of positive applications, recent instances of [...] Read more.
Drones, also known as unmanned aerial vehicles (UAVs) and sometimes referred to as ‘Mobile IoT’ or ‘Flying IoT’, are widely adopted worldwide, with their market share continuously increasing. While drones are generally harnessed for a wide range of positive applications, recent instances of drones being employed as lethal weapons in conflicts between countries like Russia, Ukraine, Israel, Palestine, and Hamas have demonstrated the potential consequences of their misuse. Such misuse poses a significant threat to cybersecurity and human lives, thereby highlighting the need for research to swiftly and accurately analyze drone-related crimes, identify the responsible pilot, and establish when and what illegal actions were carried out. In contrast to existing research, involving limited data collection and analysis of the drone, our study focused on collecting and rigorously analyzing data without restrictions from the remote controller used to operate the drone. This comprehensive approach allowed us to unveil essential details, including the pilot’s account information, the specific drone used, pairing timestamps, the pilot’s operational location, the drone’s flight path, and the content captured during flights. We developed methodologies and proposed artifacts to reveal these specifics, which were supported by real-world data. Significantly, this study is the pioneering digital forensic investigation of remote controller devices. We meticulously collected and analyzed all internal data, and we even employed reverse engineering to decrypt critical information files. These achievements hold substantial significance. The outcomes of this research are expected to serve as a digital forensic methodology for drone systems, thereby making valuable contributions to numerous investigations. Full article
(This article belongs to the Special Issue Security, Cybercrime, and Digital Forensics for the IoT)
Show Figures

Figure 1

26 pages, 8913 KiB  
Article
Small Fixed-Wing UAV Radar Cross-Section Signature Investigation and Detection and Classification of Distance Estimation Using Realistic Parameters of a Commercial Anti-Drone System
by Ioannis K. Kapoulas, Antonios Hatziefremidis, A. K. Baldoukas, Evangelos S. Valamontes and J. C. Statharas
Drones 2023, 7(1), 39; https://doi.org/10.3390/drones7010039 - 6 Jan 2023
Cited by 17 | Viewed by 14549
Abstract
Various types of small drones constitute a modern threat for infrastructure and hardware, as well as for humans; thus, special-purpose radar has been developed in the last years in order to identify such drones. When studying the radar signatures, we observed that the [...] Read more.
Various types of small drones constitute a modern threat for infrastructure and hardware, as well as for humans; thus, special-purpose radar has been developed in the last years in order to identify such drones. When studying the radar signatures, we observed that the majority of the scientific studies refer to multirotor aerial vehicles; there is a significant gap regarding small, fixed-wing Unmanned Aerial Vehicles (UAVs). Driven by the security principle, we conducted a series of Radar Cross Section (RCS) simulations on the Euclid fixed-wing UAV, which has a wingspan of 2 m and is being developed by our University. The purpose of this study is to partially fill the gap that exists regarding the RCS signatures and identification distances of fixed-wing UAVs of the same wingspan as the Euclid. The software used for the simulations was POFACETS (v.4.1). Two different scenarios were carried out. In scenario A, the RCS of the Euclid fixed-wing UAV, with a 2 m wingspan, was analytically studied. Robin radar systems’ Elvira Anti Drone System is the simulated radar, operating at 8.7 to 9.65 GHz; θ angle is set at 85° for this scenario. Scenario B studies the Euclid RCS within the broader 3 to 16 Ghz spectrum at the same θ = 85° angle. The results indicated that the Euclid UAV presents a mean RCS value (σ ¯) of −17.62 dBsm for scenario A, and a mean RCS value (σ ¯) of −22.77 dBsm for scenario B. These values are much smaller than the values of a typical commercial quadcopter, such as DJI Inspire 1, which presents −9.75 dBsm and −13.92 dBsm for the same exact scenarios, respectively. As calculated in the study, the Euclid UAV can penetrate up to a distance of 1784 m close to the Elvira Anti Drone System, while the DJI Inspire 1 will be detected at 2768 m. This finding is of great importance, as the obviously larger fixed-wing Euclid UAV will be detected about one kilometer closer to the anti-drone system. Full article
Show Figures

Figure 1

13 pages, 1720 KiB  
Article
Comparison of Radar Signatures from a Hybrid VTOL Fixed-Wing Drone and Quad-Rotor Drone
by Jiangkun Gong, Deren Li, Jun Yan, Huiping Hu and Deyong Kong
Drones 2022, 6(5), 110; https://doi.org/10.3390/drones6050110 - 27 Apr 2022
Cited by 11 | Viewed by 6396
Abstract
Current studies rarely mention radar detection of hybrid vertical take-off and landing (VTOL) fixed-wing drones. We investigated radar signals of an industry-tier VTOL fixed-wing drone, TX25A, compared with the radar detection results of a quad-rotor drone, DJI Phantom 4. We used an X-band [...] Read more.
Current studies rarely mention radar detection of hybrid vertical take-off and landing (VTOL) fixed-wing drones. We investigated radar signals of an industry-tier VTOL fixed-wing drone, TX25A, compared with the radar detection results of a quad-rotor drone, DJI Phantom 4. We used an X-band pulse-Doppler phased array radar to collect tracking radar data of the two drones in a coastal area near the Yellow Sea in China. The measurements indicate that TX25A had double the values of radar cross-section (RCS) and flying speed and a 2 dB larger signal-to-clutter ratio (SCR) than DJI Phantom 4. The radar signals of both drones had micro-Doppler signals or jet engine modulation (JEM) produced by the lifting rotor blades, but the Doppler modulated by the puller rotor blades of TX25A was undetectable. JEM provides radar signatures such as the rotating rate, modulated by the JEM frequency spacing interval and the number of blades for radar automatic target recognition (ATR), but also interferes with the radar tracking algorithm by suppressing the body Doppler. This work provides an a priori investigation of new VTOL fixed-wing drones and may inspire future research. Full article
Show Figures

Figure 1

20 pages, 26407 KiB  
Article
A Robust and Accurate Landing Methodology for Drones on Moving Targets
by Assaf Keller and Boaz Ben-Moshe
Drones 2022, 6(4), 98; https://doi.org/10.3390/drones6040098 - 15 Apr 2022
Cited by 15 | Viewed by 11648
Abstract
This paper presents a framework for performing autonomous precise landing of unmanned aerial vehicles (UAVs) on dynamic targets. The main goal of this work is to design the methodology and the controlling algorithms that will allow multi-rotor drones to perform a robust and [...] Read more.
This paper presents a framework for performing autonomous precise landing of unmanned aerial vehicles (UAVs) on dynamic targets. The main goal of this work is to design the methodology and the controlling algorithms that will allow multi-rotor drones to perform a robust and efficient landing in dynamic conditions of changing wind, dynamic obstacles, and moving targets. Unlike existing GNSS-based vertical landing solutions, the suggested framework does not rely on global positioning and uses adaptive diagonal approaching angle visual landing. The framework was designed to work on existing camera-drone platforms, without any need for additional sensors, and it was implemented using DJI’s API on Android devices. The presented concept of visual sliding landing (VSL) was tested on a wide range of commercial drones, performing hundreds of precise and robust autonomous landings on dynamic targets, including boats, cars, RC-boats, and RC-rovers. Full article
(This article belongs to the Special Issue Honorary Special Issue for Prof. Max F. Platzer)
Show Figures

Figure 1

Back to TopTop