Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = DCT domain entropy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 16782 KB  
Article
Ultra-Short-Term Prediction of Monopile Offshore Wind Turbine Vibration Based on a Hybrid Model Combining Secondary Decomposition and Frequency-Enhanced Channel Self-Attention Transformer
by Zhenju Chuang, Yijie Zhao, Nan Gao and Zhenze Yang
J. Mar. Sci. Eng. 2025, 13(9), 1760; https://doi.org/10.3390/jmse13091760 - 11 Sep 2025
Viewed by 613
Abstract
Ice loads continue to pose challenges to the structural safety of offshore wind turbines (OWTs), while the rapid development of offshore wind power in cold regions is enabling the deployment of OWTs in deeper waters. To accurately simulate the dynamic response of an [...] Read more.
Ice loads continue to pose challenges to the structural safety of offshore wind turbines (OWTs), while the rapid development of offshore wind power in cold regions is enabling the deployment of OWTs in deeper waters. To accurately simulate the dynamic response of an OWT under combined ice–wind loading, this paper proposes a Discrete Element Method–Wind Turbine Integrated Analysis (DEM-WTIA) framework. The framework can synchronously simulate discontinuous ice-crushing processes and aeroelastic–structural dynamic responses through a holistic turbine model that incorporates rotor dynamics and control systems. To address the issue of insufficient prediction accuracy for dynamic responses, we introduced a multivariate time series forecasting method that integrates a secondary decomposition strategy with a hybrid prediction model. First, we developed a parallel signal processing mechanism, termed Adaptive Complete Ensemble Empirical Mode Decomposition with Improved Singular Spectrum Analysis (CEEMDAN-ISSA), which achieves adaptive denoising via permutation entropy-driven dynamic window optimization and multi-feature fusion-based anomaly detection, yielding a noise suppression rate of 76.4%. Furthermore, we propose the F-Transformer prediction model, which incorporates a Frequency-Enhanced Channel Attention Mechanism (FECAM). By integrating the Discrete Cosine Transform (DCT) into the Transformer architecture, the F-Transformer mines hidden features in the frequency domain, capturing potential periodicities in discontinuous data. Experimental results demonstrate that signals processed by ISSA exhibit increased signal-to-noise ratios and enhanced fidelity. The F-Transformer achieves a maximum reduction of 31.86% in mean squared error compared to the standard Transformer and maintains a coefficient of determination (R2) above 0.91 under multi-condition coupled testing. By combining adaptive decomposition and frequency-domain enhancement techniques, this framework provides a precise and highly adaptable ultra-short-term response forecasting tool for the safe operation and maintenance of offshore wind power in cold regions. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

16 pages, 3489 KB  
Article
On a Key-Based Secured Audio Data-Hiding Scheme Robust to Volumetric Attack with Entropy-Based Embedding
by Jose Juan Garcia-Hernandez
Entropy 2019, 21(10), 996; https://doi.org/10.3390/e21100996 - 12 Oct 2019
Cited by 4 | Viewed by 2737
Abstract
In the data-hiding field, it is mandatory that proposed schemes are key-secured as required by the Kerckhoff’s principle. Moreover, perceptual transparency must be guaranteed. On the other hand, volumetric attack is of special interest in audio data-hiding systems. This study proposes a data-hiding [...] Read more.
In the data-hiding field, it is mandatory that proposed schemes are key-secured as required by the Kerckhoff’s principle. Moreover, perceptual transparency must be guaranteed. On the other hand, volumetric attack is of special interest in audio data-hiding systems. This study proposes a data-hiding scheme for audio signals, which is both key-based secured and highly perceptually transparent and, thus, robust to the volumetric attack. A modification to a state-of-the-art data-hiding algorithm is proposed to achieve key-based security. Embedding is carried out in the integer discrete cosine transform (DCT) domain; selected samples for embedding are determined by the entropy of the Integer DCT coefficients. Of the two key-based improvements proposed, the multiplicative strategy gives better results, guaranteeing the worst bit error rate when an incorrect key is used. Additionally, the perceptual transparency of the proposed scheme is higher, compared to the state-of-the-art schemes using similar embedding strategies. Full article
(This article belongs to the Special Issue Entropy Based Data Hiding)
Show Figures

Figure 1

21 pages, 1683 KB  
Article
Blind Image Quality Assessment of Natural Scenes Based on Entropy Differences in the DCT Domain
by Xiaohan Yang, Fan Li, Wei Zhang and Lijun He
Entropy 2018, 20(11), 885; https://doi.org/10.3390/e20110885 - 17 Nov 2018
Cited by 20 | Viewed by 5303
Abstract
Blind/no-reference image quality assessment is performed to accurately evaluate the perceptual quality of a distorted image without prior information from a reference image. In this paper, an effective blind image quality assessment approach based on entropy differences in the discrete cosine transform domain [...] Read more.
Blind/no-reference image quality assessment is performed to accurately evaluate the perceptual quality of a distorted image without prior information from a reference image. In this paper, an effective blind image quality assessment approach based on entropy differences in the discrete cosine transform domain for natural images is proposed. Information entropy is an effective measure of the amount of information in an image. We find the discrete cosine transform coefficient distribution of distorted natural images shows a pulse-shape phenomenon, which directly affects the differences of entropy. Then, a Weibull model is used to fit the distributions of natural and distorted images. This is because the Weibull model sufficiently approximates the pulse-shape phenomenon as well as the sharp-peak and heavy-tail phenomena of natural scene statistics rules. Four features that are related to entropy differences and human visual system are extracted from the Weibull model for three scaling images. Image quality is assessed by the support vector regression method based on the extracted features. This blind Weibull statistics algorithm is thoroughly evaluated using three widely used databases: LIVE, TID2008, and CSIQ. The experimental results show that the performance of the proposed blind Weibull statistics method is highly consistent with that of human visual perception and greater than that of the state-of-the-art blind and full-reference image quality assessment methods in most cases. Full article
(This article belongs to the Special Issue Entropy in Image Analysis)
Show Figures

Figure 1

15 pages, 2412 KB  
Article
No-Reference Image Blur Assessment Based on Response Function of Singular Values
by Shanqing Zhang, Pengcheng Li, Xianghua Xu, Li Li and Ching-Chun Chang
Symmetry 2018, 10(8), 304; https://doi.org/10.3390/sym10080304 - 1 Aug 2018
Cited by 17 | Viewed by 4605
Abstract
Blur is an important factor affecting the image quality. This paper presents an efficient no-reference (NR) image blur assessment method based on a response function of singular values. For an image, the grayscale image is computed to the acquire spatial information. In the [...] Read more.
Blur is an important factor affecting the image quality. This paper presents an efficient no-reference (NR) image blur assessment method based on a response function of singular values. For an image, the grayscale image is computed to the acquire spatial information. In the meantime, the gradient map is computed to acquire the shape information, and the saliency map can be obtained by using scale-invariant feature transform (SIFT). Then, the grayscale image, the gradient map, and the saliency map are divided into blocks of the same size. The blocks of the gradient map are converted into discrete cosine transform (DCT) coefficients, from which the response function of singular values (RFSV) are generated. The sum of the RFSV are then utilized to characterize the image blur. The variance of the grayscale image and the DCT domain entropy of the gradient map are used to reduce the impact of the image content. The SIFT-dependent weights are calculated in the saliency map, which are assigned to the image blocks. Finally, the blur score is the normalized sum of the RFSV. Extensive experiments are conducted on four synthetic databases and two real blur databases. The experimental results indicate that the blur scores produced by our method are highly correlated with the subjective evaluations. Furthermore, the proposed method is superior to six state-of-the-art methods. Full article
(This article belongs to the Special Issue Information Technology and Its Applications 2021)
Show Figures

Figure 1

17 pages, 3729 KB  
Article
Multiple Description Coding Based on Optimized Redundancy Removal for 3D Depth Map
by Sen Han, Huihui Bai and Mengmeng Zhang
Entropy 2016, 18(7), 245; https://doi.org/10.3390/e18070245 - 29 Jun 2016
Cited by 2 | Viewed by 4822
Abstract
Multiple description (MD) coding is a promising alternative for the robust transmission of information over error-prone channels. In 3D image technology, the depth map represents the distance between the camera and objects in the scene. Using the depth map combined with the existing [...] Read more.
Multiple description (MD) coding is a promising alternative for the robust transmission of information over error-prone channels. In 3D image technology, the depth map represents the distance between the camera and objects in the scene. Using the depth map combined with the existing multiview image, it can be efficient to synthesize images of any virtual viewpoint position, which can display more realistic 3D scenes. Differently from the conventional 2D texture image, the depth map contains a lot of spatial redundancy information, which is not necessary for view synthesis, but may result in the waste of compressed bits, especially when using MD coding for robust transmission. In this paper, we focus on the redundancy removal of MD coding based on the DCT (discrete cosine transform) domain. In view of the characteristics of DCT coefficients, at the encoder, a Lagrange optimization approach is designed to determine the amounts of high frequency coefficients in the DCT domain to be removed. It is noted considering the low computing complexity that the entropy is adopted to estimate the bit rate in the optimization. Furthermore, at the decoder, adaptive zero-padding is applied to reconstruct the depth map when some information is lost. The experimental results have shown that compared to the corresponding scheme, the proposed method demonstrates better rate central and side distortion performance. Full article
Show Figures

Graphical abstract

Back to TopTop