Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Cyperus alopecuroides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1223 KB  
Article
Nutrient Remediation Efficiency of the Sedge Plant (Cyperus alopecuroides Rottb.) to Restore Eutrophic Freshwater Ecosystems
by Tarek M. Galal, Fatma A. Gharib, Hatim M. Al-Yasi, Khalid A. Al-Mutairi, Khalid H. Mansour and Ebrahem M. Eid
Sustainability 2022, 14(5), 2823; https://doi.org/10.3390/su14052823 - 28 Feb 2022
Cited by 8 | Viewed by 2886
Abstract
The current study investigated the nutrients removal efficiency of the sedge macrophyte Cyperus alopecuroides to treat water eutrophication, besides evaluating the recycling possibility of the harvested material. Samples of sediment, water, and plant tissues were taken seasonally from six polluted and three unpolluted [...] Read more.
The current study investigated the nutrients removal efficiency of the sedge macrophyte Cyperus alopecuroides to treat water eutrophication, besides evaluating the recycling possibility of the harvested material. Samples of sediment, water, and plant tissues were taken seasonally from six polluted and three unpolluted locations for this investigation. The growth properties of C. alopecuroides showed remarkable seasonal differences in plant density and biomass, with the maximum values (7.1 individual/m2 and 889.6 g/m2, respectively) obtained during summer and the minimum (4.1 individual/m2 and 547.2 g/m2, respectively) in winter. In polluted locations, the above-ground tissues had an efficiency to remove more contents of N and P (11.9 and 3.8 g/m2, respectively) than in unpolluted ones (7.1 and 3.4 g/m2, respectively). The high-nutrient standing stock of C. alopecuroides supports its potential use for nutrient removal from eutrophic wetlands. The tissues of C. alopecuroides had the maximum nutrients removal efficiency to remediate great amounts of Na, K, and N in summer, and Ca, P, and Mg in spring. Above- and below-ground parts of C. alopecuroides from unpolluted locations can be considered as a rough forage for beef cattle, dairy cattle, goats, and sheep. The present study indicated the potential of C. alopecuroides in restoring eutrophic freshwater ecosystems, and, thus, it can be used in similar habitats worldwide. Full article
(This article belongs to the Special Issue Sustainable Phytoremediation of the Polluted Soil)
Show Figures

Figure 1

18 pages, 3923 KB  
Article
Assessment of the Heavy Metals Pollution and Ecological Risk in Sediments of Mediterranean Sea Drain Estuaries in Egypt and Phytoremediation Potential of Two Emergent Plants
by Yasser A. El-Amier, Armel Zacharie Ekoa Bessa, Ashraf Elsayed, Mohamed A. El-Esawi, Mohammad S. AL-Harbi, Bassem N. Samra and Wafaa K. Kotb
Sustainability 2021, 13(21), 12244; https://doi.org/10.3390/su132112244 - 5 Nov 2021
Cited by 13 | Viewed by 3687
Abstract
Environmental pollution and its eco-toxicological impacts have become a large and interesting concern worldwide as a result of fast urbanization, population expansion, sewage discharge, and heavy industrial development. Nine heavy metals (Pb, Cd, Fe, Mn, Zn, Ni, Cu, Cr, and Co) were evaluated [...] Read more.
Environmental pollution and its eco-toxicological impacts have become a large and interesting concern worldwide as a result of fast urbanization, population expansion, sewage discharge, and heavy industrial development. Nine heavy metals (Pb, Cd, Fe, Mn, Zn, Ni, Cu, Cr, and Co) were evaluated in 20 sediment samples from the estuaries of four major drains along the Mediterranean shoreline (Nile Delta coast) to determine the possible ecological effect of high heavy metal concentrations as well as roots and shoots of two common macrophytes (Cyperus alopecuroides and Persicaria salicifolia). For sediment, single- and multi-elemental standard indices were used to measure ecological risk. Data revealed high contents of heavy metals, for which the mean values of heavy metals in sediment followed a direction of Fe > Mn > Co > Zn > Cu > Ni > Cr > Pb > Cd, Fe > Mn > Co > Ni > Zn > Cu > Cr > Pb > Cd and Fe > Mn > Zn > Co > Cu > Ni > Cr > Pb > Cd for drains stream, estuaries, and Mediterranean coast, respectively. Mn, Cr, Zn, and Pb were found to be within Canadian Soil Quality Guidelines (CSQGD) and U.S. Environmental Protection Agency Guidelines (US-EPA) limitations, except for Zn and Pb in drain streams, which were above the US-EPA limits, whereas Cd, Co, Cu, and Ni indicated a high ecological risk index. This high quantity of contaminants might be linked to unabated manufacturing operations, which can bio-accumulate in food systems and create significant health issues in people. C. alopecuroides root demonstrated a more efficient accumulation of all metals than the shoot system. For most heavy metals, C. alopecuroides had the highest root BAF levels with the exception of Ni and Pb in P. salicifolia. As a result, C. alopecuroides might be employed as a possible phytoextractor of these dangerous metals, while P. salicifolia could be used as a hyper-accumulator of Ni and Pb. The policymaker must consider strict rules and restrictions against uncontrolled industrial operations, particularly in the Nile Delta near water streams. Full article
Show Figures

Figure 1

16 pages, 5646 KB  
Article
Phytoremediation Perspectives of Seven Aquatic Macrophytes for Removal of Heavy Metals from Polluted Drains in the Nile Delta of Egypt
by Mohamed Abdelaal, Ibrahim A. Mashaly, Dina S. Srour, Mohammed A. Dakhil, Mohamed Azab El-Liethy, Ali El-Keblawy, Reham F. El-Barougy, Marwa Waseem A. Halmy and Ghada A. El-Sherbeny
Biology 2021, 10(6), 560; https://doi.org/10.3390/biology10060560 - 20 Jun 2021
Cited by 23 | Viewed by 5184
Abstract
The current study addressed the heavy metals accumulation potentials of seven perennial aquatic macrophytes (Cyperus alopecuroides, Echinochloa stagnina, Eichhornia crassipes, Ludwigia stolonifera, Phragmites australis, Ranunculus sceleratus and Typha domingensis) and the pollution status of three drains [...] Read more.
The current study addressed the heavy metals accumulation potentials of seven perennial aquatic macrophytes (Cyperus alopecuroides, Echinochloa stagnina, Eichhornia crassipes, Ludwigia stolonifera, Phragmites australis, Ranunculus sceleratus and Typha domingensis) and the pollution status of three drains (Amar, El-Westany and Omar-Beck) in the Nile Delta of Egypt. Nine sites at each drain were sampled for sediment and plant analyses. Concentrations of eight metals (Fe, Cu, Zn, Mn, Co, Cd, Ni, and Pb) were determined in the sediment and the aboveground and belowground tissues of the selected macrophytes. Bioaccumulation factor (BF) and translocation factor (TF) were computed for each species. The sediment heavy metals concentrations of the three drains occurred in the following order: El-Westany > Amar > Omar-Beck. The concentrations of sediment heavy metals in the three drains were ordered as follows: Fe (438.45–615.17 mg kg−1) > Mn (341.22–481.09 mg kg−1) > Zn (245.08–383.19 mg kg−1) > Cu (205.41–289.56 mg kg−1) > Pb (31.49–97.73 mg kg−1) > Cd (13.97–55.99 mg kg−1) > Ni (14.36–39.34 mg kg−1) > Co (1.25–3.51 mg kg−1). The sediment exceeded the worldwide permissible ranges of Cu, Zn and Pb, but ranged within safe limits for Mn, Cd, Ni and Co. P. australis accumulated the highest concentrations of Fe, Co, Cd and Ni, while E. crassipes contained the highest concentrations of Cu, Zn, Mn, and Pb. Except for C. alopecuroides and Cu metal, the studied species had BF values greater than one for the investigated heavy metals. Nevertheless, the TFs of all species (except Cd in L. stolonifera) were less than one. Hence, the studied species are appropriate for accumulation, biomonitoring, and phytostabilization of the investigated metals. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

Back to TopTop