Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = CoviRx.org

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 8434 KiB  
Data Descriptor
CoviRx: A User-Friendly Interface for Systematic Down-Selection of Repurposed Drug Candidates for COVID-19
by Hardik A. Jain, Vinti Agarwal, Chaarvi Bansal, Anupama Kumar, Faheem, Muzaffar-Ur-Rehman Mohammed, Sankaranarayanan Murugesan, Moana M. Simpson, Avinash V. Karpe, Rohitash Chandra, Christopher A. MacRaild, Ian K. Styles, Amanda L. Peterson, Matthew A. Cooper, Carl M. J. Kirkpatrick, Rohan M. Shah, Enzo A. Palombo, Natalie L. Trevaskis, Darren J. Creek and Seshadri S. Vasan
Data 2022, 7(11), 164; https://doi.org/10.3390/data7110164 - 18 Nov 2022
Cited by 4 | Viewed by 4494
Abstract
Although various vaccines are now commercially available, they have not been able to stop the spread of COVID-19 infection completely. An excellent strategy to get safe, effective, and affordable COVID-19 treatments quickly is to repurpose drugs that are already approved for other diseases. [...] Read more.
Although various vaccines are now commercially available, they have not been able to stop the spread of COVID-19 infection completely. An excellent strategy to get safe, effective, and affordable COVID-19 treatments quickly is to repurpose drugs that are already approved for other diseases. The process of developing an accurate and standardized drug repurposing dataset requires considerable resources and expertise due to numerous commercially available drugs that could be potentially used to address the SARS-CoV-2 infection. To address this bottleneck, we created the CoviRx.org platform. CoviRx is a user-friendly interface that allows analysis and filtering of large quantities of data, which is onerous to curate manually for COVID-19 drug repurposing. Through CoviRx, the curated data have been made open source to help combat the ongoing pandemic and encourage users to submit their findings on the drugs they have evaluated, in a uniform format that can be validated and checked for integrity by authenticated volunteers. This article discusses the various features of CoviRx, its design principles, and how its functionality is independent of the data it displays. Thus, in the future, this platform can be extended to include any other disease beyond COVID-19. Full article
Show Figures

Figure 1

18 pages, 1762 KiB  
Article
Use of Human Lung Tissue Models for Screening of Drugs against SARS-CoV-2 Infection
by Alexander J. McAuley, Petrus Jansen van Vuren, Muzaffar-Ur-Rehman Mohammed, Faheem, Sarah Goldie, Shane Riddell, Nathan J. Gödde, Ian K. Styles, Matthew P. Bruce, Simran Chahal, Stephanie Keating, Kim R. Blasdell, Mary Tachedjian, Carmel M. O’Brien, Nagendrakumar Balasubramanian Singanallur, John Noel Viana, Aditya V. Vashi, Carl M. Kirkpatrick, Christopher A. MacRaild, Rohan M. Shah, Elizabeth Vincan, Eugene Athan, Darren J. Creek, Natalie L. Trevaskis, Sankaranarayanan Murugesan, Anupama Kumar and Seshadri S. Vasanadd Show full author list remove Hide full author list
Viruses 2022, 14(11), 2417; https://doi.org/10.3390/v14112417 - 31 Oct 2022
Cited by 7 | Viewed by 4488
Abstract
The repurposing of licenced drugs for use against COVID-19 is one of the most rapid ways to develop new and alternative therapeutic options to manage the ongoing pandemic. Given circa 7817 licenced compounds available from Compounds Australia that can be screened, this paper [...] Read more.
The repurposing of licenced drugs for use against COVID-19 is one of the most rapid ways to develop new and alternative therapeutic options to manage the ongoing pandemic. Given circa 7817 licenced compounds available from Compounds Australia that can be screened, this paper demonstrates the utility of commercially available ex vivo/3D airway and alveolar tissue models. These models are a closer representation of in vivo studies than in vitro models, but retain the benefits of rapid in vitro screening for drug efficacy. We demonstrate that several existing drugs appear to show anti-SARS-CoV-2 activity against both SARS-CoV-2 Delta and Omicron Variants of Concern in the airway model. In particular, fluvoxamine, as well as aprepitant, everolimus, and sirolimus, has virus reduction efficacy comparable to the current standard of care (remdesivir, molnupiravir, nirmatrelvir). Whilst these results are encouraging, further testing and efficacy studies are required before clinical use can be considered. Full article
(This article belongs to the Section SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

14 pages, 2141 KiB  
Article
Systematic Down-Selection of Repurposed Drug Candidates for COVID-19
by Christopher A. MacRaild, Muzaffar-Ur-Rehman Mohammed, Faheem, Sankaranarayanan Murugesan, Ian K. Styles, Amanda L. Peterson, Carl M. J. Kirkpatrick, Matthew A. Cooper, Enzo A. Palombo, Moana M. Simpson, Hardik A. Jain, Vinti Agarwal, Alexander J. McAuley, Anupama Kumar, Darren J. Creek, Natalie L. Trevaskis and Seshadri S. Vasan
Int. J. Mol. Sci. 2022, 23(19), 11851; https://doi.org/10.3390/ijms231911851 - 6 Oct 2022
Cited by 5 | Viewed by 4333
Abstract
SARS-CoV-2 is the cause of the COVID-19 pandemic which has claimed more than 6.5 million lives worldwide, devastating the economy and overwhelming healthcare systems globally. The development of new drug molecules and vaccines has played a critical role in managing the pandemic; however, [...] Read more.
SARS-CoV-2 is the cause of the COVID-19 pandemic which has claimed more than 6.5 million lives worldwide, devastating the economy and overwhelming healthcare systems globally. The development of new drug molecules and vaccines has played a critical role in managing the pandemic; however, new variants of concern still pose a significant threat as the current vaccines cannot prevent all infections. This situation calls for the collaboration of biomedical scientists and healthcare workers across the world. Repurposing approved drugs is an effective way of fast-tracking new treatments for recently emerged diseases. To this end, we have assembled and curated a database consisting of 7817 compounds from the Compounds Australia Open Drug collection. We developed a set of eight filters based on indicators of efficacy and safety that were applied sequentially to down-select drugs that showed promise for drug repurposing efforts against SARS-CoV-2. Considerable effort was made to evaluate approximately 14,000 assay data points for SARS-CoV-2 FDA/TGA-approved drugs and provide an average activity score for 3539 compounds. The filtering process identified 12 FDA-approved molecules with established safety profiles that have plausible mechanisms for treating COVID-19 disease. The methodology developed in our study provides a template for prioritising drug candidates that can be repurposed for the safe, efficacious, and cost-effective treatment of COVID-19, long COVID, or any other future disease. We present our database in an easy-to-use interactive interface (CoviRx that was also developed to enable the scientific community to access to the data of over 7000 potential drugs and to implement alternative prioritisation and down-selection strategies. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

Back to TopTop