Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Corticoviridae

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2808 KiB  
Article
A Bacteriophage Microgel Effectively Treats the Multidrug-Resistant Acinetobacter baumannii Bacterial Infections in Burn Wounds
by Deepa Dehari, Aiswarya Chaudhuri, Dulla Naveen Kumar, Rohit Patil, Mayank Gangwar, Sonam Rastogi, Dinesh Kumar, Gopal Nath and Ashish Kumar Agrawal
Pharmaceuticals 2023, 16(7), 942; https://doi.org/10.3390/ph16070942 - 29 Jun 2023
Cited by 11 | Viewed by 3488
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) is one of the major pathogens present in burn wound infections. Biofilm formation makes it further challenging to treat with clinically available antibiotics. In the current work, we isolated the A. baumannii-specific bacteriophages (BPABΦ1), [...] Read more.
Multidrug-resistant (MDR) Acinetobacter baumannii (A. baumannii) is one of the major pathogens present in burn wound infections. Biofilm formation makes it further challenging to treat with clinically available antibiotics. In the current work, we isolated the A. baumannii-specific bacteriophages (BPABΦ1), loaded into the chitosan microparticles followed by dispersion in gel, and evaluated therapeutic efficacy against MDR A. baumannii clinical strains. Isolated BPABΦ1 were found to belong to the Corticoviridae family, with burst size 102.12 ± 2.65 PFUs per infected host cell. The BPABΦ1 loaded chitosan microparticles were evaluated for quality attributes viz. size, PDI, surface morphology, in vitro release, etc. The developed formulation exhibited excellent antibiofilm eradication potential in vitro and effective wound healing after topical application. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

16 pages, 4120 KiB  
Article
Varidnaviruses in the Human Gut: A Major Expansion of the Order Vinavirales
by Natalya Yutin, Mike Rayko, Dmitry Antipov, Pascal Mutz, Yuri I. Wolf, Mart Krupovic and Eugene V. Koonin
Viruses 2022, 14(9), 1842; https://doi.org/10.3390/v14091842 - 23 Aug 2022
Cited by 7 | Viewed by 3123
Abstract
Bacteriophages play key roles in the dynamics of the human microbiome. By far the most abundant components of the human gut virome are tailed bacteriophages of the realm Duplodnaviria, in particular, crAss-like phages. However, apart from duplodnaviruses, the gut virome has not [...] Read more.
Bacteriophages play key roles in the dynamics of the human microbiome. By far the most abundant components of the human gut virome are tailed bacteriophages of the realm Duplodnaviria, in particular, crAss-like phages. However, apart from duplodnaviruses, the gut virome has not been dissected in detail. Here we report a comprehensive census of a minor component of the gut virome, the tailless bacteriophages of the realm Varidnaviria. Tailless phages are primarily represented in the gut by prophages, that are mostly integrated in genomes of Alphaproteobacteria and Verrucomicrobia and belong to the order Vinavirales, which currently consists of the families Corticoviridae and Autolykiviridae. Phylogenetic analysis of the major capsid proteins (MCP) suggests that at least three new families should be established within Vinavirales to accommodate the diversity of prophages from the human gut virome. Previously, only the MCP and packaging ATPase genes were reported as conserved core genes of Vinavirales. Here we report an extended core set of 12 proteins, including MCP, packaging ATPase, and previously undetected lysis enzymes, that are shared by most of these viruses. We further demonstrate that replication system components are frequently replaced in the genomes of Vinavirales, suggestive of selective pressure for escape from yet unknown host defenses or avoidance of incompatibility with coinfecting related viruses. The results of this analysis show that, in a sharp contrast to marine viromes, varidnaviruses are a minor component of the human gut virome. Moreover, they are primarily represented by prophages, as indicated by the analysis of the flanking genes, suggesting that there are few, if any, lytic varidnavirus infections in the gut at any given time. These findings complement the existing knowledge of the human gut virome by exploring a group of viruses that has been virtually overlooked in previous work. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

27 pages, 785 KiB  
Review
Bacteriophages of Thermophilic ‘Bacillus Group’ Bacteria—A Review
by Beata Łubkowska, Joanna Jeżewska-Frąckowiak, Ireneusz Sobolewski and Piotr M. Skowron
Microorganisms 2021, 9(7), 1522; https://doi.org/10.3390/microorganisms9071522 - 16 Jul 2021
Cited by 26 | Viewed by 6044
Abstract
Bacteriophages of thermophiles are of increasing interest owing to their important roles in many biogeochemical, ecological processes and in biotechnology applications, including emerging bionanotechnology. However, due to lack of in-depth investigation, they are underrepresented in the known prokaryotic virosphere. Therefore, there is a [...] Read more.
Bacteriophages of thermophiles are of increasing interest owing to their important roles in many biogeochemical, ecological processes and in biotechnology applications, including emerging bionanotechnology. However, due to lack of in-depth investigation, they are underrepresented in the known prokaryotic virosphere. Therefore, there is a considerable potential for the discovery of novel bacteriophage-host systems in various environments: marine and terrestrial hot springs, compost piles, soil, industrial hot waters, among others. This review aims at providing a reference compendium of thermophages characterized thus far, which infect the species of thermophilic ‘Bacillus group’ bacteria, mostly from Geobacillus sp. We have listed 56 thermophages, out of which the majority belong to the Siphoviridae family, others belong to the Myoviridae and Podoviridae families and, apparently, a few belong to the Sphaerolipoviridae, Tectiviridae or Corticoviridae families. All of their genomes are composed of dsDNA, either linear, circular or circularly permuted. Fourteen genomes have been sequenced; their sizes vary greatly from 35,055 bp to an exceptionally large genome of 160,590 bp. We have also included our unpublished data on TP-84, which infects Geobacillus stearothermophilus (G. stearothermophilus). Since the TP-84 genome sequence shows essentially no similarity to any previously characterized bacteriophage, we have defined TP-84 as a new species in the newly proposed genus Tp84virus within the Siphoviridae family. The information summary presented here may be helpful in comparative deciphering of the molecular basis of the thermophages’ biology, biotechnology and in analyzing the environmental aspects of the thermophages’ effect on the thermophile community. Full article
(This article belongs to the Special Issue Bacillus subtilis as a Model Organism to Study Basic Cell Processes)
Show Figures

Figure 1

17 pages, 1363 KiB  
Review
Half a Century of Research on Membrane-Containing Bacteriophages: Bringing New Concepts to Modern Virology
by Sari Mäntynen, Lotta-Riina Sundberg, Hanna M. Oksanen and Minna M. Poranen
Viruses 2019, 11(1), 76; https://doi.org/10.3390/v11010076 - 18 Jan 2019
Cited by 40 | Viewed by 8647
Abstract
Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume [...] Read more.
Half a century of research on membrane-containing phages has had a major impact on virology, providing new insights into virus diversity, evolution and ecological importance. The recent revolutionary technical advances in imaging, sequencing and lipid analysis have significantly boosted the depth and volume of knowledge on these viruses. This has resulted in new concepts of virus assembly, understanding of virion stability and dynamics, and the description of novel processes for viral genome packaging and membrane-driven genome delivery to the host. The detailed analyses of such processes have given novel insights into DNA transport across the protein-rich lipid bilayer and the transformation of spherical membrane structures into tubular nanotubes, resulting in the description of unexpectedly dynamic functions of the membrane structures. Membrane-containing phages have provided a framework for understanding virus evolution. The original observation on membrane-containing bacteriophage PRD1 and human pathogenic adenovirus has been fundamental in delineating the concept of “viral lineages”, postulating that the fold of the major capsid protein can be used as an evolutionary fingerprint to trace long-distance evolutionary relationships that are unrecognizable from the primary sequences. This has brought the early evolutionary paths of certain eukaryotic, bacterial, and archaeal viruses together, and potentially enables the reorganization of the nearly immeasurable virus population (~1 × 1031) on Earth into a reasonably low number of groups representing different architectural principles. In addition, the research on membrane-containing phages can support the development of novel tools and strategies for human therapy and crop protection. Full article
(This article belongs to the Section Bacterial Viruses)
Show Figures

Figure 1

Back to TopTop