Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Coley’s toxin

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1061 KiB  
Review
Coley’s Toxin to First Approved Therapeutic Vaccine—A Brief Historical Account in the Progression of Immunobiology-Based Cancer Treatment
by K. Devaraja, Manisha Singh, Krishna Sharan and Sadhna Aggarwal
Biomedicines 2024, 12(12), 2746; https://doi.org/10.3390/biomedicines12122746 - 30 Nov 2024
Cited by 3 | Viewed by 2263
Abstract
Cancer immunobiology is one of the hot topics of discussion amongst researchers today, and immunotherapeutic modalities are among the selected few emerging approaches to cancer treatment that have exhibited a promising outlook. However, immunotherapy is not a new kid on the block; it [...] Read more.
Cancer immunobiology is one of the hot topics of discussion amongst researchers today, and immunotherapeutic modalities are among the selected few emerging approaches to cancer treatment that have exhibited a promising outlook. However, immunotherapy is not a new kid on the block; it has been around for centuries. The origin of cancer immunotherapy in modern medicine can be traced back to the initial reports of spontaneous regression of malignant tumors in some patients following an acute febrile infection, at the turn of the twentieth century. This review briefly revisits the historical accounts of immunotherapy, highlighting some of the significant developments in the field of cancer immunobiology, that have been instrumental in bringing back the immunotherapeutic approaches to the forefront of cancer research. Some of the topics covered are: Coley’s toxin—the first immunotherapeutic; the genesis of the theory of immune surveillance; the discovery of T lymphocytes and dendritic cells and their roles; the role of tumor antigens; relevance of tumor microenvironment; the anti-tumor (therapeutic) ability of Bacillus Calmette– Guérin; Melacine—the first therapeutic vaccine engineered; theories of immunoediting and immunophenotyping of cancer; and Provenge—the first FDA-approved therapeutic vaccine. In this review, head and neck cancer has been taken as the reference tumor for narrating the progression of cancer immunobiology, particularly for highlighting the advent of immunotherapeutic agents. Full article
Show Figures

Figure 1

63 pages, 5895 KiB  
Review
Hacking the Immune Response to Solid Tumors: Harnessing the Anti-Cancer Capacities of Oncolytic Bacteria
by Jason M. Roe, Kevin Seely, Caleb J. Bussard, Emily Eischen Martin, Elizabeth G. Mouw, Kenneth W. Bayles, Michael A. Hollingsworth, Amanda E. Brooks and Kaitlin M. Dailey
Pharmaceutics 2023, 15(7), 2004; https://doi.org/10.3390/pharmaceutics15072004 - 21 Jul 2023
Cited by 11 | Viewed by 7256
Abstract
Oncolytic bacteria are a classification of bacteria with a natural ability to specifically target solid tumors and, in the process, stimulate a potent immune response. Currently, these include species of Klebsiella, Listeria, Mycobacteria, Streptococcus/Serratia (Coley’s Toxin), Proteus, [...] Read more.
Oncolytic bacteria are a classification of bacteria with a natural ability to specifically target solid tumors and, in the process, stimulate a potent immune response. Currently, these include species of Klebsiella, Listeria, Mycobacteria, Streptococcus/Serratia (Coley’s Toxin), Proteus, Salmonella, and Clostridium. Advancements in techniques and methodology, including genetic engineering, create opportunities to “hijack” typical host–pathogen interactions and subsequently harness oncolytic capacities. Engineering, sometimes termed “domestication”, of oncolytic bacterial species is especially beneficial when solid tumors are inaccessible or metastasize early in development. This review examines reported oncolytic bacteria–host immune interactions and details the known mechanisms of these interactions to the protein level. A synopsis of the presented membrane surface molecules that elicit particularly promising oncolytic capacities is paired with the stimulated localized and systemic immunogenic effects. In addition, oncolytic bacterial progression toward clinical translation through engineering efforts are discussed, with thorough attention given to strains that have accomplished Phase III clinical trial initiation. In addition to therapeutic mitigation after the tumor has formed, some bacterial species, referred to as “prophylactic”, may even be able to prevent or “derail” tumor formation through anti-inflammatory capabilities. These promising species and their particularly favorable characteristics are summarized as well. A complete understanding of the bacteria–host interaction will likely be necessary to assess anti-cancer capacities and unlock the full cancer therapeutic potential of oncolytic bacteria. Full article
(This article belongs to the Special Issue Targeted Drug Delivery to Improve Cancer Therapy)
Show Figures

Figure 1

4 pages, 170 KiB  
Editorial
Challenges and Opportunities for Effective Cancer Immunotherapies
by Clare Y. Slaney and Michael H. Kershaw
Cancers 2020, 12(11), 3164; https://doi.org/10.3390/cancers12113164 - 28 Oct 2020
Cited by 9 | Viewed by 2295
Abstract
Using immunotherapy to treat cancers can be traced back to the 1890s, where a New York physician William Coley used heat-killed bacteria to treat cancer patients, which became known as “Coley’s toxin” [...] Full article
(This article belongs to the Special Issue Challenges and Opportunities for Effective Cancer Immunotherapies)
23 pages, 1344 KiB  
Review
Talkin’ Toxins: From Coley’s to Modern Cancer Immunotherapy
by Robert D. Carlson, John C. Flickinger and Adam E. Snook
Toxins 2020, 12(4), 241; https://doi.org/10.3390/toxins12040241 - 9 Apr 2020
Cited by 65 | Viewed by 10881
Abstract
The ability of the immune system to precisely target and eliminate aberrant or infected cells has long been studied in the field of infectious diseases. Attempts to define and exploit these potent immunological processes in the fight against cancer has been a longstanding [...] Read more.
The ability of the immune system to precisely target and eliminate aberrant or infected cells has long been studied in the field of infectious diseases. Attempts to define and exploit these potent immunological processes in the fight against cancer has been a longstanding effort dating back over 100 years to when Dr. William Coley purposefully infected cancer patients with a cocktail of heat-killed bacteria to stimulate anti-cancer immune processes. Although the field of cancer immunotherapy has been dotted with skepticism at times, the success of immune checkpoint inhibitors and recent FDA approvals of autologous cell therapies have pivoted immunotherapy to center stage as one of the most promising strategies to treat cancer. This review aims to summarize historic milestones throughout the field of cancer immunotherapy as well as highlight current and promising immunotherapies in development. Full article
(This article belongs to the Special Issue Toxins and Cancer Therapy)
Show Figures

Figure 1

Back to TopTop