Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = Citrus reticulata “Dahongpao”

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4251 KiB  
Article
Metabolome Comparison of Sichuan Dried Orange Peels (Chenpi) Aged for Different Years
by Wenling Zhang, Xun Fu, Yan Zhang, Xingyu Chen, Tingting Feng, Chunmei Xiong and Qingyu Nie
Horticulturae 2024, 10(4), 421; https://doi.org/10.3390/horticulturae10040421 - 22 Apr 2024
Cited by 4 | Viewed by 2728
Abstract
Chuan chenpi is obtained by aging the peel of Citrus reticulata cv. ‘Dahongpao’, a traditional Chinese citrus variety. Chenpi has been used in traditional Chinese medicine since ancient times. It is believed that the longer the ripening period, the better the health properties. [...] Read more.
Chuan chenpi is obtained by aging the peel of Citrus reticulata cv. ‘Dahongpao’, a traditional Chinese citrus variety. Chenpi has been used in traditional Chinese medicine since ancient times. It is believed that the longer the ripening period, the better the health properties. The composition of the metabolome of Chuan chenpi and how different aging periods affect it are not known. Current analysis was performed using Chuan chenpi aged for one (CR1), five (CR5) and ten (CR10) years. Initially, the total flavonoid and phenolic content were quantified, and then the global metabolomic profiles of CR1, CR5 and CR10 were studied. The total flavonoid and phenolic content increased significantly in CR5 compared to CR1 and then decreased in CR10. The metabolomic analyses led to the identification of 781 compounds belonging to more than 19 classes. Flavonoids and phenolic acids accounted for almost half (~48%) of the Chuan chenpi metabolome. Other major classes included amino acids (~8%), alkaloids (7.17%), organic acids (~7%), sugars (5.5%), nucleotides and derivatives (~5%), free fatty acids (3.33%) and other classes. The metabolite diversity of glycerol esters, terpenoids and stilbenes was constant during the three storage periods, whereas those of lignans, vitamins, coumarins, lipids and free fatty acids showed slight variations. The subclass distribution of phenylpropanoids, quinones, sphingolipids, and organic acids showed a decrease in diversity from CR1 to CR5, with CR10 showing a further decrease or remaining constant. Amino acids and derivatives, phenolic acids and flavonoids showed an increasing trend in the number of metabolites over the storage period. Compared to CR5, CR10 showed a higher number of differentially accumulated metabolites; in particular, flavonoids, phenolic acids and organic acids showed increased accumulation in CR10. In conclusion, the metabolome of Chuan chenpi is rich in flavonoids and phenols. Aging significantly affects the metabolome composition. Both CR5 and CR10 may be useful materials for health studies depending on the objectives of pharmacological use. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

19 pages, 9847 KiB  
Article
Evaluation of Antioxidant Activity and Drug Delivery Potential of Cell-Derived Extracellular Vesicles from Citrus reticulata Blanco cv. ‘Dahongpao’
by Shunjie Li, Zimao Ye, Lintao Zhao, Yijun Yao and Zhiqin Zhou
Antioxidants 2023, 12(9), 1706; https://doi.org/10.3390/antiox12091706 - 1 Sep 2023
Cited by 18 | Viewed by 3289
Abstract
Plant extracellular vesicles (PEVs) have attracted increasing attention due to their rich composition, good antioxidant and anti-inflammatory activity, and ability to transport drugs. As a common fruit, citrus is an ideal material for extracting PEVs because of the diversity and abundance of bioactive [...] Read more.
Plant extracellular vesicles (PEVs) have attracted increasing attention due to their rich composition, good antioxidant and anti-inflammatory activity, and ability to transport drugs. As a common fruit, citrus is an ideal material for extracting PEVs because of the diversity and abundance of bioactive substances in it. In our study, citrus-derived extracellular vesicles (CEVs) were extracted from red mandarin (Citrus reticulata Blanco cv. ‘Dahongpao’) and it was found that they contain high levels of lipids, proteins, and carbohydrates. The high levels of total phenols and total flavonoids suggest that CEVs have good chemical antioxidant properties. We also demonstrated through cell experiments that CEVs have significant antioxidant and anti-inflammatory effects. Furthermore, we found that CEVs have an encapsulation rate of 71.5 ± 0.19% and a high drug-carrying capacity of 4.96 ± 0.22% and can enhance antioxidant and anti-inflammatory activity when loaded with tangeretin. Our results show that CEVs contain abundant bioactive components, have low toxicity, exhibit good antioxidant and anti-inflammatory properties, and can serve as drug delivery agents. This study has important implications for utilizing citrus materials and developing natural anti-oxidative and anti-inflammatory biomaterials. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

18 pages, 2138 KiB  
Article
Comparative Analysis of the Impact of Three Drying Methods on the Properties of Citrus reticulata Blanco cv. Dahongpao Powder and Solid Drinks
by Shunjie Li, Xiaoxue Mao, Long Guo and Zhiqin Zhou
Foods 2023, 12(13), 2514; https://doi.org/10.3390/foods12132514 - 28 Jun 2023
Cited by 10 | Viewed by 3785
Abstract
Citrus reticulata Blanco cv. Dahongpao is a traditional Chinese citrus variety. Due to the high investment in storage and transport of Citrus reticulata Blanco cv. Dahongpao and the lack of market demand, the fresh fruit is wasted. The processing of fresh fruit into [...] Read more.
Citrus reticulata Blanco cv. Dahongpao is a traditional Chinese citrus variety. Due to the high investment in storage and transport of Citrus reticulata Blanco cv. Dahongpao and the lack of market demand, the fresh fruit is wasted. The processing of fresh fruit into fruit drinks can solve the problem of storage and transport difficulties and open up new markets. Investigating the effects of different drying processes (hot air, freeze, and spray drying) on fruit powders is a crucial step in identifying a suitable production process. The experiment measured the effects of different drying methods (hot air drying, freeze drying, and spray drying) on the nutrient, bioactive substance, and physical characteristics of fruit powder. This study measured the influence of three different drying methods (hot air, freeze, and spray drying) on the nutritional, bioactive substance, and physical characteristics of fruit powder. The results showed that compared to vacuum freeze-drying at low temperature (−60 °C) and spray-drying at high temperatures (150 °C), hot air drying at 50 °C produced fruit powder with superior nutritional quality, higher levels of active substances, and better physical properties. Hot air drying produced fruit powder that had the highest content of amino acids (11.48 ± 0.08 mg/g DW), vitamin C (112.09 ± 2.86 μg/g DW), total phenols (14.78 ± 0.30 mg/g GAE DW), total flavonoids (6.45 ± 0.11 mg/g RE DW), organic acids, and antioxidant activity capacity. Additionally, this method yielded the highest amounts of zinc (8.88 ± 0.03 mg/Kg DW) and soluble sugars, low water content, high solubility, and brown coloration of the fruit powder and juice. Therefore, hot air drying is one of the best production methods for producing high-quality fruit powder in factory production. Full article
(This article belongs to the Special Issue Advanced and Sustainable Food Drying Technology)
Show Figures

Figure 1

12 pages, 2824 KiB  
Article
Analysis of Flavonoid Metabolites in Citrus Peels (Citrus reticulata “Dahongpao”) Using UPLC-ESI-MS/MS
by Fu Wang, Lin Chen, Hongping Chen, Shiwei Chen and Youping Liu
Molecules 2019, 24(15), 2680; https://doi.org/10.3390/molecules24152680 - 24 Jul 2019
Cited by 133 | Viewed by 10689
Abstract
Flavonoids are a kind of essential substance for the human body because of their antioxidant properties and extremely high medicinal value. Citrus reticulata “Dahongpao” (DHP) is a special citrus variety that is rich in flavonoids, however little is known about its systematic flavonoids [...] Read more.
Flavonoids are a kind of essential substance for the human body because of their antioxidant properties and extremely high medicinal value. Citrus reticulata “Dahongpao” (DHP) is a special citrus variety that is rich in flavonoids, however little is known about its systematic flavonoids profile. In the present study, the presence of flavonoids in five important citrus varieties, including DHP, Citrus grandis Tomentosa (HZY), Citrus ichangensis Swingle (YCC), Citrus sinensis (L.) Osbeck (TC), and Citrus reticulata ‘Buzhihuo’ (BZH), was determined using a UPLC-ESI-MS/MS-based, widely targeted metabolome. Results showed that a total of 254 flavonoid metabolites (including 147 flavone, 39 flavonol, 21 flavanone, 24 anthocyanins, 8 isoflavone, and 15 polyphenol) were identified. The total flavonoid content of peels from DHP was the highest. DHP could be clearly separated from other samples through clustering analysis and principal component analysis (PCA). Further, 169 different flavonoid metabolites were observed between DHP peels and the other four citrus peels, and 26 down-regulated differential metabolites displayed important biological activities in DHP. At the same time, a unique flavonoid component, tricin 4′-O-syringyl alcohol, was only found in DHP, which could be used as a marker to distinguish between other varieties. This work might facilitate a better understanding of flavonoid metabolites between DHP peels and the other four citrus peels and provide a reference for its sufficient utilization in the future. Full article
(This article belongs to the Special Issue Flavonoids: From Structure to Health Issues II)
Show Figures

Figure 1

Back to TopTop