Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = Chaetopterus

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 1177 KB  
Communication
Chaetopterus Luciferase: A Promising Tool for Online Lipid Peroxidation Detection
by Alex S. Shcheglov, Konstantin V. Purtov, Renata I. Zagitova, Valery B. Kozhemyako, Alexandra S. Tsarkova, Astghik Pepoyan and Ilya V. Yampolsky
Int. J. Mol. Sci. 2025, 26(24), 12119; https://doi.org/10.3390/ijms262412119 - 17 Dec 2025
Viewed by 356
Abstract
Lipid peroxidation plays a crucial role in living organisms. On the one hand, it contributes to the biosynthesis of several hormones; on the other, it can damage cellular structures, induce cell death, and participate in the pathogenesis of numerous human diseases. Therefore, the [...] Read more.
Lipid peroxidation plays a crucial role in living organisms. On the one hand, it contributes to the biosynthesis of several hormones; on the other, it can damage cellular structures, induce cell death, and participate in the pathogenesis of numerous human diseases. Therefore, the development of methods for real-time monitoring of lipid peroxidation, particularly within living systems, represents a highly relevant scientific goal. We previously demonstrated that peroxides of polyunsaturated fatty acids (PUFAs) or PUFA-containing lipids serve as substrates for Chaetopterus luciferase. Further studies revealed that the luminescence of this enzyme results from the decomposition products of PUFA peroxides or related lipids. Moreover, analogous luminescence-inducing products are generated during both enzymatic and chemical peroxidation of PUFAs or PUFA-containing lipids. Collectively, these findings indicate that Chaetopterus luciferase is a promising tool for online detection of lipid peroxidation. Full article
Show Figures

Figure 1

23 pages, 7930 KB  
Article
The Diversity and Phylogenetic Relationships of a Chaetopterus Symbiont Community in Djibouti, with Redescription of Chaetopterus djiboutiensis Gravier, 1906 Stat. Nov. (Annelida: Chaetopteridae)
by Shannon D. Brown, Tullia I. Terraneo, Jenna M. Moore, Gustav Paulay, Kristine N. White, Michael L. Berumen and Francesca Benzoni
Diversity 2025, 17(5), 366; https://doi.org/10.3390/d17050366 - 21 May 2025
Cited by 1 | Viewed by 1447
Abstract
The tubes of polychaetes of the genus Chaetopterus (Annelida: Chaetopteridae) provide habitat for cryptic, symbiotic organisms that are often overlooked when examining diversity. Our study employed molecular phylogenetics to examine the diversity of symbiont species associated with Chaetopterus djiboutiensis stat. nov., collected from [...] Read more.
The tubes of polychaetes of the genus Chaetopterus (Annelida: Chaetopteridae) provide habitat for cryptic, symbiotic organisms that are often overlooked when examining diversity. Our study employed molecular phylogenetics to examine the diversity of symbiont species associated with Chaetopterus djiboutiensis stat. nov., collected from the Gulf of Tadjoura, Djibouti. A total of 15 Chaetopterus hosts and their associated symbionts were collected from nine coastal sites. Four genetic regions were targeted for PCR amplification: the mitochondrial cytochrome oxidase subunit I and 16S rDNA and the nuclear 18S rDNA and Histone H3. Chaetopterus djiboutiensis was redescribed from topotypic material and elevated to species rank, and a neotype specimen was designated. Phylogenetic and morphological analysis confirmed five species associated with C. djiboutiensis in Djibouti: two porcelain crabs, Polyonyx pedalis and Polyonyx socialis; one nudibranch, Tenellia chaetopterana; one fish, Onuxodon sp.; and one amphipod, Leucothoe sp. A. As only the fourth comprehensive study on Chaetopterus symbionts, our study highlights the diversity and community patterns of symbionts associated with these unique tubicolous marine polychaetes. Full article
Show Figures

Figure 1

18 pages, 6259 KB  
Article
Description and Genome-Based Analysis of Vibrio chaetopteri sp. nov., a New Species of the Mediterranei Clade Isolated from a Marine Polychaete
by Valeriya Kurilenko, Evgenia Bystritskaya, Nadezhda Otstavnykh, Peter Velansky, Darina Lichmanuk, Yulia Savicheva, Lyudmila Romanenko and Marina Isaeva
Microorganisms 2025, 13(3), 638; https://doi.org/10.3390/microorganisms13030638 - 11 Mar 2025
Cited by 2 | Viewed by 1756
Abstract
Two novel strains, CB1-14T and CB2-10, were isolated from the marine polychaetes Chaetopterus cautus from the Sea of Japan. Phylogenetic analysis based on the 16S rRNA sequences revealed that the two strains belong to the genus Vibrio, sharing 98.96% identity with [...] Read more.
Two novel strains, CB1-14T and CB2-10, were isolated from the marine polychaetes Chaetopterus cautus from the Sea of Japan. Phylogenetic analysis based on the 16S rRNA sequences revealed that the two strains belong to the genus Vibrio, sharing 98.96% identity with Vibrio hangzhouensis CN 83T. MLSA using five protein-coding genes (ftsZ, gyrA, gyrB, mreB, and rpoA) showed that CB1-14T and CB2-10 are closely related to the members of the Mediterranei clade, namely Vibrio mediterranei CECT 621T, Vibrio barjaei 3062T, Vibrio thalassae CECT 8203T, Vibrio hangzhouensis CGMCC 1.7062T, Vibrio maritimus CAIM 1455T, and Vibrio variabilis CAIM 1454T. Based on both MLST neighbor-net phylogenetic network and phylogenomic tree results, they fell into the subclade formed by V. maritimus CAIM 1455T and V. variabilis CAIM 1454T. Both new strains CB1-14T and CB2-10 showed the highest ANI/AAI values of 91.3%/92.7% with V. variabilis CAIM 1454T and 90.3%/93.1% with V. maritimus CAIM 1455T. The dDDH values between strain CB1-14T and the members of the Mediterranei clade ranged from 20.9% to 45.7%. Major fatty acids were C16:1ω9c, C16:1ω7c, and C18:1ω9c, followed by C16:0 and C18:1ω7c. The genome of CB1-14T is 5,591,686 bp in size, with DNA G+C content of 46.1%. It consists of two circular chromosomes (3,497,892 and 1,804,652 bp) and one plasmid (241,015 bp) and comprises 4782 protein-coding genes and 10 rrn operons. The CB1-14T and CB2-10 genomes were enriched in CAZyme-encoding genes of the following families: GH1, GH3, GH13, GH23, GH43, GH94, PL17, and CE4, indicating the potential to catabolize alginate, xylan, and chitin, common polysaccharides in marine ecosystems. Based on the combined phylogenomic analyses and phenotypic properties, a new species, Vibrio chaetopteri sp. nov., is proposed, with CB1-14T = (KMM 8419T = KCTC 92790T) as the type strain. Full article
Show Figures

Figure 1

16 pages, 3211 KB  
Article
Structure and Biosynthetic Gene Cluster of Sulfated Capsular Polysaccharide from the Marine Bacterium Vibrio sp. KMM 8419
by Maxim S. Kokoulin, Yulia V. Savicheva, Nadezhda Y. Otstavnykh, Valeria V. Kurilenko, Dmitry A. Meleshko and Marina P. Isaeva
Int. J. Mol. Sci. 2024, 25(23), 12927; https://doi.org/10.3390/ijms252312927 - 1 Dec 2024
Cited by 1 | Viewed by 2639
Abstract
Vibrio sp. KMM 8419 (=CB1-14) is a Gram-negative bacterium isolated from a food-net mucus sample of marine polychaete Chaetopterus cautus collected in the Sea of Japan. Here, we report the structure and biosynthetic gene cluster of the capsular polysaccharide (CPS) from strain KMM [...] Read more.
Vibrio sp. KMM 8419 (=CB1-14) is a Gram-negative bacterium isolated from a food-net mucus sample of marine polychaete Chaetopterus cautus collected in the Sea of Japan. Here, we report the structure and biosynthetic gene cluster of the capsular polysaccharide (CPS) from strain KMM 8419. The CPS was isolated and studied by one- and two-dimensional 1H and 13C nuclear magnetic resonance (NMR) spectroscopy. The molecular weight of the CPS was about 254 kDa. The CPS consisted of disaccharide repeating units of D-glucose and sulfated and acetylated L-rhamnose established as →2)-α-L-Rhap3S4Ac-(1→6)-α-D-Glcp-(1→. To identify the genes responsible for CPS biosynthesis, whole-genome sequencing of KMM 8419 was carried out. Based on the genome annotations together with the Interproscan, UniProt and AntiSMASH results, a CPS-related gene cluster of 80 genes was found on chromosome 1. This cluster contained sets of genes encoding for the nucleotide sugar biosynthesis (UDP-Glc and dTDP-Rha), assembly (glycosyltransferases (GT)), transport (ABC transporter) and sulfation (PAPS biosynthesis and sulfotransferases) of the sulfated CPS. A hypothetical model for the assembly and transportation of the sulfated CPS was also proposed. In addition, this locus included genes for O-antigen biosynthesis. Further studies of biological activity, the structure–activity relationship in the new sulfated polysaccharide and its biosynthesis are necessary for the development of potent anticancer agents or drug delivery systems. Full article
Show Figures

Figure 1

12 pages, 2820 KB  
Communication
Conjugated Dienoic Acid Peroxides as Substrates in Chaetopterus Bioluminescence System
by Renata I. Zagitova, Konstantin V. Purtov, Aleksandr S. Shcheglov, Konstantin S. Mineev, Maxim A. Dubinnyi, Ivan N. Myasnyanko, Olga A. Belozerova, Vera G. Pakhomova, Valentin N. Petushkov, Natalia S. Rodionova, Vladislav A. Lushpa, Elena B. Guglya, Sergey Kovalchuk, Valeri B. Kozhemyako, Jeremy D. Mirza, Anderson G. Oliveira, Ilia V. Yampolsky, Zinaida M. Kaskova and Aleksandra S. Tsarkova
Int. J. Mol. Sci. 2023, 24(11), 9466; https://doi.org/10.3390/ijms24119466 - 30 May 2023
Cited by 3 | Viewed by 2399
Abstract
Biochemistry of bioluminescence of the marine parchment tubeworm Chaetopterus has been in research focus for over a century; however, the results obtained by various groups contradict each other. Here, we report the isolation and structural elucidation of three compounds from Chaetomorpha linum algae, [...] Read more.
Biochemistry of bioluminescence of the marine parchment tubeworm Chaetopterus has been in research focus for over a century; however, the results obtained by various groups contradict each other. Here, we report the isolation and structural elucidation of three compounds from Chaetomorpha linum algae, which demonstrate bioluminescence activity with Chaetopterus luciferase in the presence of Fe2+ ions. These compounds are derivatives of polyunsaturated fatty acid peroxides. We have also obtained their structural analogues and demonstrated their activity in the bioluminescence reaction, thus confirming the broad substrate specificity of the luciferase. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

10 pages, 1069 KB  
Article
Marine Bacterium Vibrio sp. CB1-14 Produces Guanidine Alkaloid 6-epi-Monanchorin, Previously Isolated from Marine Polychaete and Sponges
by Tatyana Makarieva, Larisa Shubina, Valeria Kurilenko, Marina Isaeva, Nadezhda Chernysheva, Roman Popov, Evgeniya Bystritskaya, Pavel Dmitrenok and Valentin Stonik
Mar. Drugs 2019, 17(4), 213; https://doi.org/10.3390/md17040213 - 4 Apr 2019
Cited by 9 | Viewed by 4048
Abstract
Twenty-three bacterial strains were isolated from the secreted mucus trapping net of the marine polychaete Chaetopterus variopedatus (phylum Annelida) and twenty strains were identified using 16S rRNA gene analysis. Strain CB1-14 was recognized as a new species of the genus Vibrio using the [...] Read more.
Twenty-three bacterial strains were isolated from the secreted mucus trapping net of the marine polychaete Chaetopterus variopedatus (phylum Annelida) and twenty strains were identified using 16S rRNA gene analysis. Strain CB1-14 was recognized as a new species of the genus Vibrio using the eight-gene multilocus sequence analysis (MLSA) and genome sequences of nineteen type Vibrio strains. This Vibrio sp. was cultured, and 6-epi-monanchorin (2), previously isolated from the polychaete and two sponge species, was found in the cells and culture broth. The presence of the 6-epi-monanchorin was confirmed by its isolation followed by 1H NMR and HRESIMS analysis. These results showed the microbial origin of the bicyclic guanidine alkaloid 2 in C. variopedatus. Full article
(This article belongs to the Special Issue Selected Papers from the 3rd International Symposium on Life Science)
Show Figures

Figure 1

21 pages, 719 KB  
Review
Lectins with Anti-HIV Activity: A Review
by Ouafae Akkouh, Tzi Bun Ng, Senjam Sunil Singh, Cuiming Yin, Xiuli Dan, Yau Sang Chan, Wenliang Pan and Randy Chi Fai Cheung
Molecules 2015, 20(1), 648-668; https://doi.org/10.3390/molecules20010648 - 6 Jan 2015
Cited by 111 | Viewed by 14384
Abstract
Lectins including flowering plant lectins, algal lectins, cyanobacterial lectins, actinomycete lectin, worm lectins, and the nonpeptidic lectin mimics pradimicins and benanomicins, exhibit anti-HIV activity. The anti-HIV plant lectins include Artocarpus heterophyllus (jacalin) lectin, concanavalin A, Galanthus nivalis (snowdrop) agglutinin-related lectins, Musa acuminata [...] Read more.
Lectins including flowering plant lectins, algal lectins, cyanobacterial lectins, actinomycete lectin, worm lectins, and the nonpeptidic lectin mimics pradimicins and benanomicins, exhibit anti-HIV activity. The anti-HIV plant lectins include Artocarpus heterophyllus (jacalin) lectin, concanavalin A, Galanthus nivalis (snowdrop) agglutinin-related lectins, Musa acuminata (banana) lectin, Myrianthus holstii lectin, Narcissus pseudonarcissus lectin, and Urtica diocia agglutinin. The anti-HIV algal lectins comprise Boodlea coacta lectin, Griffithsin, Oscillatoria agardhii agglutinin. The anti-HIV cyanobacterial lectins are cyanovirin-N, scytovirin, Microcystis viridis lectin, and microvirin. Actinohivin is an anti-HIV actinomycete lectin. The anti-HIV worm lectins include Chaetopterus variopedatus polychaete marine worm lectin, Serpula vermicularis sea worm lectin, and C-type lectin Mermaid from nematode (Laxus oneistus). The anti-HIV nonpeptidic lectin mimics comprise pradimicins and benanomicins. Their anti-HIV mechanisms are discussed. Full article
(This article belongs to the Special Issue Lectins)
Back to TopTop