Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = CgENDO1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6540 KB  
Article
Zn2+-Dependent Nuclease Is Involved in Nuclear Degradation during the Programmed Cell Death of Secretory Cavity Formation in Citrus grandis ‘Tomentosa’ Fruits
by Minjian Liang, Mei Bai and Hong Wu
Cells 2021, 10(11), 3222; https://doi.org/10.3390/cells10113222 - 18 Nov 2021
Cited by 10 | Viewed by 4663
Abstract
Zn2+- and Ca2+-dependent nucleases exhibit activity toward dsDNA in the four classes of cation-dependent nucleases in plants. Programmed cell death (PCD) is involved in the degradation of cells during schizolysigenous secretory cavity formation in Citrus fruits. Recently, the Ca [...] Read more.
Zn2+- and Ca2+-dependent nucleases exhibit activity toward dsDNA in the four classes of cation-dependent nucleases in plants. Programmed cell death (PCD) is involved in the degradation of cells during schizolysigenous secretory cavity formation in Citrus fruits. Recently, the Ca2+-dependent DNase CgCAN was proven to play a key role in nuclear DNA degradation during the PCD of secretory cavity formation in Citrus grandis ‘Tomentosa’ fruits. However, whether Zn2+-dependent nuclease plays a role in the PCD of secretory cells remains poorly understood. Here, we identified a Zn2+-dependent nuclease gene, CgENDO1, from Citrus grandis ‘Tomentosa’, the function of which was studied using Zn2+ ions cytochemical localization, DNase activity assays, in situ hybridization, and protein immunolocalization. The full-length cDNA of CgENDO1 contains an open reading frame of 906 bp that encodes a protein 301 amino acids in length with a S1/P1-like functional domain. CgENDO1 degrades linear double-stranded DNA at acidic and neutral pH. CgENDO1 is mainly expressed in the late stage of nuclear degradation of secretory cells. Further spatiotemporal expression patterns of CgENDO1 showed that CgENDO1 is initially located on the endoplasmic reticulum and then moves into intracellular vesicles and nuclei. During the late stage of nuclear degradation, it was concentrated in the area of nuclear degradation involved in nuclear DNA degradation. Our results suggest that the Zn2+-dependent nuclease CgENDO1 plays a direct role in the late degradation stage of the nuclear DNA in the PCD of secretory cavity cells of Citrus grandis ‘Tomentosa’ fruits. Full article
(This article belongs to the Special Issue 10th Anniversary of Cells—Advances in Autophagy)
Show Figures

Figure 1

19 pages, 1320 KB  
Article
Integrated Use of Aureobasidium pullulans Strain CG163 and Acibenzolar-S-Methyl for Management of Bacterial Canker in Kiwifruit
by Huub de Jong, Tony Reglinski, Philip A.G. Elmer, Kirstin Wurms, Joel L. Vanneste, Lindy F. Guo and Maryam Alavi
Plants 2019, 8(8), 287; https://doi.org/10.3390/plants8080287 - 15 Aug 2019
Cited by 33 | Viewed by 6096
Abstract
An isolate of Aureobasidium pullulans (strain = CG163) and the plant defence elicitor acibenzolar-S-methyl (ASM) were investigated for their ability to control leaf spot in kiwifruit caused by Pseudomonas syringae pv. actinidiae biovar 3 (Psa). Clonal Actinidia chinensis var. deliciosa plantlets (‘Hayward’) were [...] Read more.
An isolate of Aureobasidium pullulans (strain = CG163) and the plant defence elicitor acibenzolar-S-methyl (ASM) were investigated for their ability to control leaf spot in kiwifruit caused by Pseudomonas syringae pv. actinidiae biovar 3 (Psa). Clonal Actinidia chinensis var. deliciosa plantlets (‘Hayward’) were treated with ASM, CG163 or ASM + CG163 at seven and one day before inoculation with Psa. ASM (0.2 g/L) was applied either as a root or foliar treatments and CG163 was applied as a foliar spray containing 2 × 107 CFU/mL. Leaf spot incidence was significantly reduced by all treatments compared with the control. The combination of ASM + CG163 had greater efficacy (75%) than either ASM (55%) or CG163 (40%) alone. Moreover, treatment efficacy correlated positively with the expression of defence-related genes: pathogenesis-related protein 1 (PR1), β-1,3-glucosidase, Glucan endo 1,3-β-glucosidase (Gluc_PrimerH) and Class IV chitinase (ClassIV_Chit), with greater gene upregulation in plants treated with ASM + CG163 than by the individual treatments. Pathogen population studies indicated that CG163 had significant suppressive activity against epiphytic populations of Psa. Endophytic populations were reduced by ASM + CG163 but not by the individual treatments, and by 96–144 h after inoculation were significantly lower than the control. Together these data suggest that ASM + CG163 have complementary modes of action that contribute to greater control of leaf spotting than either treatment alone. Full article
(This article belongs to the Special Issue Induced Resistance (IR) of Plants)
Show Figures

Figure 1

14 pages, 1558 KB  
Article
Regulation of Hepatic UGT2B15 by Methylation in Adults of Asian Descent
by Steffen G. Oeser, Jon-Paul Bingham and Abby C. Collier
Pharmaceutics 2018, 10(1), 6; https://doi.org/10.3390/pharmaceutics10010006 - 7 Jan 2018
Cited by 7 | Viewed by 5486
Abstract
The hepatic uridine 5′-diphosphate-glucuronosyl transferases (UGTs) are critical for detoxifying endo- and xenobiotics. Since UGTs are also dynamically responsive to endogenous and exogenous stimuli, we examined whether epigenetic DNA methylation can regulate hepatic UGT expression and differential effects of ethnicity, obesity, and sex. [...] Read more.
The hepatic uridine 5′-diphosphate-glucuronosyl transferases (UGTs) are critical for detoxifying endo- and xenobiotics. Since UGTs are also dynamically responsive to endogenous and exogenous stimuli, we examined whether epigenetic DNA methylation can regulate hepatic UGT expression and differential effects of ethnicity, obesity, and sex. The methylation status of UGT isoforms was determined with Illumina Methylation 450 BeadChip arrays, with genotyping confirmed by sequencing and gene expression confirmed with quantitative reverse transcriptase polymerase chain reaction (q-RT-PCR). The UGT1A3 mRNA was 2-fold higher in females than males (p < 0.05), while UGT1A1 and UGT2B7 mRNA were significantly higher in Pacific Islanders than Caucasians (both p < 0.05). Differential mRNA or methylation did not occur with obesity. The methylation of the UGT2B15 locus cg09189601 in Caucasians was significantly lower than the highly methylated locus in Asians (p < 0.001). Three intergenic loci between UGT2B15 and 2B17 (cg07973162, cg10632656, and cg07952421) showed higher rates of methylation in Caucasians than in Asians (p < 0.001). Levels of UGT2B15 and UGT2B17 mRNA were significantly lower in Asians than Caucasians (p = 0.01 and p < 0.001, respectively). Genotyping and sequencing indicated that only UGT2B15 is regulated by methylation, and low UGT2B17 mRNA is due to a deletion genotype common to Asians. Epigenetic regulation of UGT2B15 may predispose Asians to altered drug and hormone metabolism and begin to explain the increased risks for adverse drug reactions and some cancers in this population. Full article
(This article belongs to the Special Issue Pharmacokinetics and Drug Metabolism in Canada: The Current Landscape)
Show Figures

Graphical abstract

14 pages, 3533 KB  
Article
Biscembranoids and Cembranoids from the Soft Coral Sarcophyton elegans
by Wei Li, Yi-Hong Zou, Man-Xi Ge, Lan-Lan Lou, Yun-Shao Xu, Abrar Ahmed, Yun-Yun Chen, Jun-Sheng Zhang, Gui-Hua Tang and Sheng Yin
Mar. Drugs 2017, 15(4), 85; https://doi.org/10.3390/md15040085 - 23 Mar 2017
Cited by 17 | Viewed by 5405
Abstract
Two novel biscembranoids, sarelengans A and B (1 and 2), five new cembranoids, sarelengans C–G (37), along with two known cembranoids (8 and 9) were isolated from the South China Sea soft coral Sarcophyton elegans [...] Read more.
Two novel biscembranoids, sarelengans A and B (1 and 2), five new cembranoids, sarelengans C–G (37), along with two known cembranoids (8 and 9) were isolated from the South China Sea soft coral Sarcophyton elegans. Their structures were determined by spectroscopic and chemical methods, and those of 1, 4, 5, and 6 were confirmed by single crystal X-ray diffraction. Compounds 1 and 2 represent the first example of biscembranoids featuring a trans-fused A/B-ring conjunction between the two cembranoid units. Their unique structures may shed light on an unusual biosynthetic pathway involving a cembranoid-∆8 rather than the normal cembranoid-∆1 unit in the endo-Diels-Alder cycloaddition. Compounds 2 and 3 exhibited potential inhibitory effects on nitric oxide production in RAW 264.7 macrophages, with IC50 values being at 18.2 and 32.5 μM, respectively. Full article
(This article belongs to the Collection Bioactive Compounds from Marine Invertebrates)
Show Figures

Graphical abstract

Back to TopTop