Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Catalpa bignonioides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 5643 KiB  
Article
Evaluating Spherical Trees in the Urban Environment in Budapest (Hungary)
by Krisztina Szabó, Eszter Tőke and Attila Gergely
Plants 2025, 14(2), 228; https://doi.org/10.3390/plants14020228 - 15 Jan 2025
Cited by 1 | Viewed by 1240
Abstract
The world’s big cities, including Budapest, are becoming more crowded, with more and more people living in smaller and smaller spaces. There is an increasing demand for more green space and trees, with less vertical and less horizontal space. In addition, deteriorating environmental [...] Read more.
The world’s big cities, including Budapest, are becoming more crowded, with more and more people living in smaller and smaller spaces. There is an increasing demand for more green space and trees, with less vertical and less horizontal space. In addition, deteriorating environmental conditions are making it even more difficult for trees to grow and survive. Tree species in urban areas have multiple functions and high ecosystem services when in good health. Among taxa with diverse habits, sizes, crown shapes, growth vigor, longevity, urban tolerance, and canopy habit, our research aims to evaluate urban specimens of spherical species with smaller space requirements and sizes but have regular geometric crown shapes in public plantations in Budapest. In the restricted urban habitats, the city’s cadastral records include 4676 specimens with spherical crowns. Among the species examined, eight species with globular crowns (Acer platanoides ‘Globosum’, Catalpa bignonioides ‘Nana’, Celtis occidentalis ‘Globosa’, Fraxinus excelsior ‘Nana’, Fraxinus ornus ‘Mecsek’, Platanus × hispanica ‘Alphen’s Globe’, Prunus × eminens ‘Umbraculifera’ and Robinia pseudoacacia ‘Umbraculifera’) were evaluated in relation to age, health, wood type, crown size, and shade projection in order to show which species are or will be suitable in the future. Full article
(This article belongs to the Special Issue Sustainable Plants and Practices for Resilient Urban Greening)
Show Figures

Figure 1

10 pages, 2748 KiB  
Article
Extraction and Characterization of New Cellulosic Fiber from Catalpa bignonioides Fruits for Potential Use in Sustainable Products
by Ebru Bozaci and Aylin Altınışık Tağaç
Polymers 2023, 15(1), 201; https://doi.org/10.3390/polym15010201 - 30 Dec 2022
Cited by 15 | Viewed by 3654
Abstract
The purpose of this study was to investigate the extract of Catalpa bignonioides plants and characterize novel natural cellulosic fibers from the fruits as an alternative material for sustainable products. The Catalpa bignonioides tree contains pharmacologically active compounds and is found all over [...] Read more.
The purpose of this study was to investigate the extract of Catalpa bignonioides plants and characterize novel natural cellulosic fibers from the fruits as an alternative material for sustainable products. The Catalpa bignonioides tree contains pharmacologically active compounds and is found all over the world. The sustainable natural fibers were easily extracted in an environmentally friendly manner from the fruits of the plant and characterized in terms of their chemical, thermal, and physical properties. The Catalpa bignonioides fibers (CBF) were composed of cellulose (58.3%), hemicellulose (3.1%), and lignin (38.6%) and had a low density (0.713 g/cm3). Fourier transform (FT-IR) analysis, X-ray diffraction (XRD), and scanning electron microscopy (SEM) analyses were used to search for the chemical groups, crystalline structures, and surface morphology of the CBF fibers. The results suggest that CBF fibers are a suitable alternative for composite and textile applications. Full article
(This article belongs to the Special Issue Natural Polysaccharide: Synthesis, Modification and Application)
Show Figures

Figure 1

12 pages, 2239 KiB  
Article
Effect of Pinoresinol and Vanillic Acid Isolated from Catalpa bignonioides on Mouse Myoblast Proliferation via the Akt/mTOR Signaling Pathway
by Seo-Young Kim, Sung-Pil Kwon, SeonJu Park, Su-Hyeon Cho, Youngse Oh, Seung Hyun Kim, Yoon Ho Park, Hyun Suk Jung, Deug-chan Lee, Hoibin Jeong and Kil-Nam Kim
Molecules 2022, 27(17), 5397; https://doi.org/10.3390/molecules27175397 - 24 Aug 2022
Cited by 9 | Viewed by 2669
Abstract
Growth and maintenance of skeletal muscle is essential for athletic performance and a healthy life. Stimulating the proliferation and differentiation of muscle cells may help prevent loss of muscle mass. To discover effective natural substances enabling to mitigate muscle loss without side effects, [...] Read more.
Growth and maintenance of skeletal muscle is essential for athletic performance and a healthy life. Stimulating the proliferation and differentiation of muscle cells may help prevent loss of muscle mass. To discover effective natural substances enabling to mitigate muscle loss without side effects, we evaluated muscle growth with several compounds extracted from Catalpa bignonioides Walt. Among these compounds, pinoresinol and vanillic acid increased C2C12, a mouse myoblast cell line, proliferation being the most without cytotoxicity. These substances activated the Akt/mammalian target of the rapamycin (mTOR) pathway, which positively regulates the proliferation of muscle cells. In addition, the results of in silico molecular docking study showed that they may bind to the active site of insulin-like growth factor 1 receptor (IGF-1R), which is an upstream of the Akt/mTOR pathway, indicating that both pinoresinol and vanillic acid stimulate myoblast proliferation through direct interaction with IGF-1R. These results suggest that pinoresinol and vanillic acid may be a natural supplement to improve the proliferation of skeletal muscle via IGF-1R/Akt/mTOR signaling and thus strengthen muscles. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

17 pages, 1905 KiB  
Article
Effects of Different Growth Regulators on the Rooting of Catalpa bignonioides Softwood Cuttings
by Jin’e Quan, Ruoyi Ni, Yange Wang, Jiajia Sun, Mingyue Ma and Huitao Bi
Life 2022, 12(8), 1231; https://doi.org/10.3390/life12081231 - 15 Aug 2022
Cited by 17 | Viewed by 4288
Abstract
(1) Background: To further improve the rapid reproduction and large-scale application of Catalpa bignonioides. (2) Methods: With young softwood cuttings from a 3-year-old C. bignonioides mother plant used as materials, the effects of indole-3-acetic acid(IAA), indolebutyric acid(IBA) and rhizogenic powder-1(ABT-1) growth regulators [...] Read more.
(1) Background: To further improve the rapid reproduction and large-scale application of Catalpa bignonioides. (2) Methods: With young softwood cuttings from a 3-year-old C. bignonioides mother plant used as materials, the effects of indole-3-acetic acid(IAA), indolebutyric acid(IBA) and rhizogenic powder-1(ABT-1) growth regulators at different concentrations on cutting indexes and the dynamic changes in endogenous hormone contents during the rooting of the C. bignonioides cuttings were studied. (3) Results: The rooting of C. bignonioides cuttings could be divided into five stages. There were three types of rooting of adventitious roots. IBA treatment resulted in a high rooting rate and beneficial root morphology. The morphological indexes of the cutting roots after treatment with 1000 mg·L−1 IBA had the best overall quality, which was significantly higher than that of the roots in the control (CK) group (p < 0.05). Although the average longest root length (20.51 cm) under ABT-1 was the longest, its overall average rooting rate was slightly lower than that under IBA. The rooting effect under IAA was generally lower than that under IBA and ABT-1. The endogenous hormone content of the cuttings was found to be closely related to rooting; the IAA and zeatin nucleoside (ZR) content was high, and the ratios of IAA/ABA and IAA/ZR were high. The contents of gibberellin3 (GA3) and abscisic acid (ABA) were low, which had a promoting effect on the rooting of the cuttings. (5) Conclusions: All three kinds of auxin can promote rooting and, of the three treatment groups, the rooting effect of cuttings in the IBA treatment group was the strongest, with 1000 mg·L−1 being the optimum concentration. Full article
Show Figures

Figure 1

15 pages, 3238 KiB  
Article
The Chemical Constituents from Fruits of Catalpa bignonioides Walt. and Their α-Glucosidase Inhibitory Activity and Insulin Secretion Effect
by Youngse Oh, Dahae Lee, SeonJu Park, Seung Hyun Kim and Ki Sung Kang
Molecules 2021, 26(2), 362; https://doi.org/10.3390/molecules26020362 - 12 Jan 2021
Cited by 9 | Viewed by 4404
Abstract
Catalpa pod has been used in traditional medicine for the treatment of diabetes mellitus in South America. Studies on the constituents of Catalpa species have shown that it is rich in iridoids. In the present study, three previously undescribed compounds (2 [...] Read more.
Catalpa pod has been used in traditional medicine for the treatment of diabetes mellitus in South America. Studies on the constituents of Catalpa species have shown that it is rich in iridoids. In the present study, three previously undescribed compounds (24), including two secoiridoid derivatives along with twelve known compounds, were isolated from the fruits of Catalpa bignonioides Walt. In addition, fully assigned 13C-NMR of 5,6-dihydroxy-7,4’-dimethoxyflavone-6-O-sophoroside (1) is reported for the first time in the present study. The structures of compounds were determined on the basis of extensive spectroscopic methods, including UV, IR, 1D, and 2D NMR, mass spectroscopy, and CD spectroscopic data. All the isolated compounds were evaluated for α-glucosidase inhibitory activity. Among the tested compounds, compounds 2, 3, and 9 exhibited significant inhibitory activity against α-glucosidase enzyme assay. Meanwhile, the effect of compounds 2, 3, and 9 on glucose-stimulated insulin secretion (GSIS) was measured using pancreatic β-cells. Compounds 2, 3, and 9 exhibited non-cytotoxicity-stimulated insulin secretion in INS-1 cells. The expression levels of proteins associated with β-cell function and insulin secretion such as phosphorylation of total insulin receptor substrate-2 (IRS-2), phosphatidylinositol 3-kinase (PI3K), Akt, activated pancreatic duodenal homeobox-1 (PDX-1), and peroxisome proliferator-activated receptor-γ (PPAR-γ) were increased in INS-1 cells after treatment with compounds 2, 3, and 9. The findings of the present study could provide a scientific warrant for their application as a potential antidiabetic agent. Full article
Show Figures

Figure 1

Back to TopTop