Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = CaDHN2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3004 KiB  
Article
A Timeline of Biosynthetic Gene Cluster Discovery in Aspergillus fumigatus: From Characterization to Future Perspectives
by Hye-Won Seo, Natalia S. Wassano, Mira Syahfriena Amir Rawa, Grant R. Nickles, André Damasio and Nancy P. Keller
J. Fungi 2024, 10(4), 266; https://doi.org/10.3390/jof10040266 - 2 Apr 2024
Cited by 5 | Viewed by 3758 | Correction
Abstract
In 1999, the first biosynthetic gene cluster (BGC), synthesizing the virulence factor DHN melanin, was characterized in Aspergillus fumigatus. Since then, 19 additional BGCs have been linked to specific secondary metabolites (SMs) in this species. Here, we provide a comprehensive timeline of [...] Read more.
In 1999, the first biosynthetic gene cluster (BGC), synthesizing the virulence factor DHN melanin, was characterized in Aspergillus fumigatus. Since then, 19 additional BGCs have been linked to specific secondary metabolites (SMs) in this species. Here, we provide a comprehensive timeline of A. fumigatus BGC discovery and find that initial advances centered around the commonly expressed SMs where chemical structure informed rationale identification of the producing BGC (e.g., gliotoxin, fumigaclavine, fumitremorgin, pseurotin A, helvolic acid, fumiquinazoline). Further advances followed the transcriptional profiling of a ΔlaeA mutant, which aided in the identification of endocrocin, fumagillin, hexadehydroastechrome, trypacidin, and fumisoquin BGCs. These SMs and their precursors are the commonly produced metabolites in most A. fumigatus studies. Characterization of other BGC/SM pairs required additional efforts, such as induction treatments, including co-culture with bacteria (fumicycline/neosartoricin, fumigermin) or growth under copper starvation (fumivaline, fumicicolin). Finally, four BGC/SM pairs were discovered via overexpression technologies, including the use of heterologous hosts (fumicycline/neosartoricin, fumihopaside, sphingofungin, and sartorypyrone). Initial analysis of the two most studied A. fumigatus isolates, Af293 and A1160, suggested that both harbored ca. 34–36 BGCs. An examination of 264 available genomes of A. fumigatus located only four additional new BGCs, suggesting the secondary metabolome across A. fumigatus isolates is remarkably conserved. Based on our analysis, around 20 of the genetically characterized BGCs within the A. fumigatus species complex still lack a known chemical product. Such BGCs remain the final hurdle in fully understanding the secondary metabolism in this important species. Full article
(This article belongs to the Special Issue Future Trends in Clinical and Basic Studies on Aspergillus spp.)
Show Figures

Figure 1

19 pages, 16340 KiB  
Article
Dehydrin CaDHN2 Enhances Drought Tolerance by Affecting Ascorbic Acid Synthesis under Drought in Peppers
by Xin Li, Hao Feng, Sha Liu, Junjun Cui, Jiannan Liu, Mingyu Shi, Jielong Zhao and Lihu Wang
Plants 2023, 12(22), 3895; https://doi.org/10.3390/plants12223895 - 18 Nov 2023
Cited by 7 | Viewed by 2247
Abstract
Peppers (Capsicum annuum L.), as a horticultural crop with one of the highest ascorbic acid contents, are negatively affected by detrimental environmental conditions both in terms of quality and productivity. In peppers, the high level of ascorbic acid is not only a [...] Read more.
Peppers (Capsicum annuum L.), as a horticultural crop with one of the highest ascorbic acid contents, are negatively affected by detrimental environmental conditions both in terms of quality and productivity. In peppers, the high level of ascorbic acid is not only a nutrient substance but also plays a role in environmental stress, i.e., drought stress. When suffering from drought stress, plants accumulate dehydrins, which play important roles in the stress response. Here, we isolated an SK3-type DHN gene CaDHN2 from peppers. CaDHN2 was located in the nucleus, cytoplasm, and cell membrane. In CaDHN2-silenced peppers, which are generated by virus-induced gene silencing (VIGS), the survival rate is much lower, the electrolytic leakage is higher, and the accumulation of reactive oxygen species (ROS) is greater when compared with the control under drought stress. Moreover, when CaDHN2 (CaDHN2-OE) is overexpressed in Arabidopsis, theoverexpressing plants show enhanced drought tolerance, increased antioxidant enzyme activities, and lower ROS content. Based on yeast two-hybrid (Y2H), GST-pull down, and bimolecular fluorescence complementation (BiFC) results, we found that CaDHN2 interacts with CaGGP1, the key enzyme in ascorbic acid (AsA) synthesis, in the cytoplasm. Accordingly, the level of ascorbic acid is highly reduced in CaDHN2-silenced peppers, indicating that CaDHN2 interacts with CaGGP1 to affect the synthesis of ascorbic acid under drought stress, thus improving the drought tolerance of peppers. Our research provides a basis for further study of the function of DHN genes. Full article
Show Figures

Figure 1

26 pages, 4197 KiB  
Article
Deciphering the Role of PIG1 and DHN-Melanin in Scedosporium apiospermum Conidia
by Hélène Guegan, Wilfried Poirier, Kevin Ravenel, Sarah Dion, Aymeric Delabarre, Dimitri Desvillechabrol, Xavier Pinson, Odile Sergent, Isabelle Gallais, Jean-Pierre Gangneux, Sandrine Giraud and Amandine Gastebois
J. Fungi 2023, 9(2), 134; https://doi.org/10.3390/jof9020134 - 18 Jan 2023
Cited by 8 | Viewed by 2931
Abstract
Scedosporium apiospermum is a saprophytic filamentous fungus involved in human infections, of which the virulence factors that contribute to pathogenesis are still poorly characterized. In particular, little is known about the specific role of dihydroxynaphtalene (DHN)-melanin, located on the external layer of the [...] Read more.
Scedosporium apiospermum is a saprophytic filamentous fungus involved in human infections, of which the virulence factors that contribute to pathogenesis are still poorly characterized. In particular, little is known about the specific role of dihydroxynaphtalene (DHN)-melanin, located on the external layer of the conidia cell wall. We previously identified a transcription factor, PIG1, which may be involved in DHN-melanin biosynthesis. To elucidate the role of PIG1 and DHN-melanin in S. apiospermum, a CRISPR-Cas9-mediated PIG1 deletion was carried out from two parental strains to evaluate its impact on melanin biosynthesis, conidia cell-wall assembly, and resistance to stress, including the ability to survive macrophage engulfment. ΔPIG1 mutants did not produce melanin and showed a disorganized and thinner cell wall, resulting in a lower survival rate when exposed to oxidizing conditions, or high temperature. The absence of melanin increased the exposure of antigenic patterns on the conidia surface. PIG1 regulates the melanization of S. apiospermum conidia, and is involved in the survival to environmental injuries and to the host immune response, that might participate in virulence. Moreover, a transcriptomic analysis was performed to explain the observed aberrant septate conidia morphology and found differentially expressed genes, underlining the pleiotropic function of PIG1. Full article
Show Figures

Figure 1

9 pages, 1668 KiB  
Article
Investigating the Functional Role of the Cysteine Residue in Dehydrin from the Arctic Mouse-Ear Chickweed Cerastium arcticum
by Il-Sup Kim, Woong Choi, Ae Kyung Park, Hyun Kim, Jonghyeon Son, Jun Hyuck Lee, Seung Chul Shin, T. Doohun Kim and Han-Woo Kim
Molecules 2022, 27(9), 2934; https://doi.org/10.3390/molecules27092934 - 4 May 2022
Viewed by 1963
Abstract
The stress-responsive, SK5 subclass, dehydrin gene, CaDHN, has been identified from the Arctic mouse-ear chickweed Cerastium arcticum. CaDHN contains an unusual single cysteine residue (Cys143), which can form intermolecular disulfide bonds. Mutational analysis and a redox experiment confirmed that the [...] Read more.
The stress-responsive, SK5 subclass, dehydrin gene, CaDHN, has been identified from the Arctic mouse-ear chickweed Cerastium arcticum. CaDHN contains an unusual single cysteine residue (Cys143), which can form intermolecular disulfide bonds. Mutational analysis and a redox experiment confirmed that the dimerization of CaDHN was the result of an intermolecular disulfide bond between the cysteine residues. The biochemical and physiological functions of the mutant C143A were also investigated by in vitro and in vivo assays using yeast cells, where it enhanced the scavenging of reactive oxygen species (ROS) by neutralizing hydrogen peroxide. Our results show that the cysteine residue in CaDHN helps to enhance C. arcticum tolerance to abiotic stress by regulating the dimerization of the intrinsically disordered CaDHN protein, which acts as a defense mechanism against extreme polar environments. Full article
(This article belongs to the Topic Advances in Enzymes and Protein Engineering)
Show Figures

Figure 1

18 pages, 5458 KiB  
Article
CaDHN3, a Pepper (Capsicum annuum L.) Dehydrin Gene Enhances the Tolerance against Salt and Drought Stresses by Reducing ROS Accumulation
by Yuan-Cheng Meng, Hua-Feng Zhang, Xiao-Xiao Pan, Nan Chen, Hui-Fang Hu, Saeed ul Haq, Abid Khan and Ru-Gang Chen
Int. J. Mol. Sci. 2021, 22(6), 3205; https://doi.org/10.3390/ijms22063205 - 22 Mar 2021
Cited by 46 | Viewed by 4277
Abstract
Dehydrins (DHNs) play an important role in abiotic stress tolerance in a large number of plants, but very little is known about the function of DHNs in pepper plants. Here, we isolated a Y1SK2-type DHN gene “CaDHN3 [...] Read more.
Dehydrins (DHNs) play an important role in abiotic stress tolerance in a large number of plants, but very little is known about the function of DHNs in pepper plants. Here, we isolated a Y1SK2-type DHN gene “CaDHN3” from pepper. To authenticate the function of CaDHN3 in salt and drought stresses, it was overexpressed in Arabidopsis and silenced in pepper through virus-induced gene silencing (VIGS). Sub-cellular localization showed that CaDHN3 was located in the nucleus and cell membrane. It was found that CaDHN3-overexpressed (OE) in Arabidopsis plants showed salt and drought tolerance phenotypic characteristics, i.e., increased the initial rooting length and germination rate, enhanced chlorophyll content, lowered the relative electrolyte leakage (REL) and malondialdehyde (MDA) content than the wild-type (WT) plants. Moreover, a substantial increase in the activities of antioxidant enzymes; including the superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), and lower hydrogen peroxide (H2O2) contents and higher O2•− contents in the transgenic Arabidopsis plants. Silencing of CaDHN3 in pepper decreased the salt- and drought-stress tolerance, through a higher REL and MDA content, and there was more accumulation of reactive oxygen species (ROS) in the CaDHN3-silenced pepper plants than the control plants. Based on the yeast two-hybrid (Y2H) screening and Bimolecular Fluorescence Complementation (BiFC) results, we found that CaDHN3 interacts with CaHIRD11 protein in the plasma membrane. Correspondingly, the expressions of four osmotic-related genes were significantly up-regulated in the CaDHN3-overexpressed lines. In brief, our results manifested that CaDHN3 may play an important role in regulating the relative osmotic stress responses in plants through the ROS signaling pathway. The results of this study will provide a basis for further analyses of the function of DHN genes in pepper. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

21 pages, 5546 KiB  
Article
CaDHN4, a Salt and Cold Stress-Responsive Dehydrin Gene from Pepper Decreases Abscisic Acid Sensitivity in Arabidopsis
by Hua-feng Zhang, Su-ya Liu, Ji-hui Ma, Xin-ke Wang, Saeed ul Haq, Yuan-cheng Meng, Yu-meng Zhang and Ru-gang Chen
Int. J. Mol. Sci. 2020, 21(1), 26; https://doi.org/10.3390/ijms21010026 - 19 Dec 2019
Cited by 42 | Viewed by 4868
Abstract
Dehydrins play an important role in improving plant resistance to abiotic stresses. In this study, we isolated a dehydrin gene from pepper (Capsicum annuum L.) leaves, designated as CaDHN4. Sub-cellular localization of CaDHN4 was to be found in the nucleus and membrane. [...] Read more.
Dehydrins play an important role in improving plant resistance to abiotic stresses. In this study, we isolated a dehydrin gene from pepper (Capsicum annuum L.) leaves, designated as CaDHN4. Sub-cellular localization of CaDHN4 was to be found in the nucleus and membrane. To authenticate the function of CaDHN4 in cold- and salt-stress responses and abscisic acid (ABA) sensitivity, we reduced the CaDHN4 expression using virus-induced gene silencing (VIGS), and overexpressed the CaDHN4 in Arabidopsis. We found that silencing of CaDHN4 reduced the growth of pepper seedlings and CaDHN4-silenced plants exhibited more serious wilting, higher electrolyte leakage, and more accumulation of ROS in the leaves compared to pTRV2:00 plants after cold stress, and lower chlorophyll contents and higher electrolyte leakage compared to pTRV2:00 plants under salt stress. However, CaDHN4-overexpressing Arabidopsis plants had higher seed germination rates and post-germination primary root growth, compared to WT plants under salt stress. In response to cold and salt stresses, the CaDHN4-overexpressed Arabidopsis exhibited lower MDA content, and lower relative electrolyte leakage compared to the WT plants. Under ABA treatments, the fresh weight and germination rates of transgenic plants were higher than WT plants. The transgenic Arabidopsis expressing a CaDHN4 promoter displayed a more intense GUS staining than the normal growth conditions under treatment with hormones including ABA, methyl jasmonate (MeJA), and salicylic acid (SA). Our results suggest that CaDHN4 can protect against cold and salt stresses and decrease ABA sensitivity in Arabidopsis. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 3531 KiB  
Article
CaDHN5, a Dehydrin Gene from Pepper, Plays an Important Role in Salt and Osmotic Stress Responses
by Dan Luo, Xiaoming Hou, Yumeng Zhang, Yuancheng Meng, Huafeng Zhang, Suya Liu, Xinke Wang and Rugang Chen
Int. J. Mol. Sci. 2019, 20(8), 1989; https://doi.org/10.3390/ijms20081989 - 23 Apr 2019
Cited by 45 | Viewed by 4782
Abstract
Dehydrins (DHNs), as a sub-family of group two late embryogenesis-abundant (LEA) proteins, have attracted considerable interest owing to their functions in enhancing abiotic stress tolerance in plants. Our previous study showed that the expression of CaDHN5 (a dehydrin gene from pepper) [...] Read more.
Dehydrins (DHNs), as a sub-family of group two late embryogenesis-abundant (LEA) proteins, have attracted considerable interest owing to their functions in enhancing abiotic stress tolerance in plants. Our previous study showed that the expression of CaDHN5 (a dehydrin gene from pepper) is strongly induced by salt and osmotic stresses, but its function was not clear. To understand the function of CaDHN5 in the abiotic stress responses, we produced pepper (Capsicum annuum L.) plants, in which CaDHN5 expression was down-regulated using VIGS (Virus-induced Gene Silencing), and transgenic Arabidopsis plants overexpressing CaDHN5. We found that knock-down of CaDHN5 suppressed the expression of manganese superoxide dismutase (MnSOD) and peroxidase (POD) genes. These changes caused more reactive oxygen species accumulation in the VIGS lines than control pepper plants under stress conditions. CaDHN5-overexpressing plants exhibited enhanced tolerance to salt and osmotic stresses as compared to the wild type and also showed increased expression of salt and osmotic stress-related genes. Interestingly, our results showed that many salt-related genes were upregulated in our transgenic Arabidopsis lines under salt or osmotic stress. Taken together, our results suggest that CaDHN5 functions as a positive regulator in the salt and osmotic stress signaling pathways. Full article
(This article belongs to the Special Issue Salinity Tolerance in Plants)
Show Figures

Graphical abstract

Back to TopTop