Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = CXorf38

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3432 KiB  
Article
Chromosome X Open Reading Frame 38 (CXorf38) Is a Tumor Suppressor and Potential Prognostic Biomarker in Lung Adenocarcinoma: The First Characterization
by Rui Yan, Heng-Wee Tan, Na-Li Cai, Le Yu, Yan Gao, Yan-Ming Xu and Andy T. Y. Lau
Proteomes 2025, 13(2), 22; https://doi.org/10.3390/proteomes13020022 - 3 Jun 2025
Viewed by 546
Abstract
Background: Previously, we found that an uncharacterized protein CXorf38 is significantly downregulated in human ZIP8-knockout (KO) cells. Given that ZIP8 regulates essential micronutrients linked to diseases including cancer, this study aims to characterize CXorf38 and evaluate its role in lung adenocarcinoma. Methods: iTRAQ-based [...] Read more.
Background: Previously, we found that an uncharacterized protein CXorf38 is significantly downregulated in human ZIP8-knockout (KO) cells. Given that ZIP8 regulates essential micronutrients linked to diseases including cancer, this study aims to characterize CXorf38 and evaluate its role in lung adenocarcinoma. Methods: iTRAQ-based proteomics was previously used to identify the abundance of proteins in ZIP8-KO cells. Cell proliferation and colony formation assays were used to examine the function of CXorf38 by overexpressing the gene in lung adenocarcinoma cell lines. Kaplan–Meier survival analysis was used to assess the prognostic value of CXorf38, while TCGA clinical database analysis was used to evaluate its expression in lung cancer tissues, particularly in smokers. Bioinformatics analyses (GO, KEGG, PPI, and ICI) were performed on CXorf38-coexpressed genes derived from patients with lung cancer. Results: CXorf38 overexpression suppressed lung cancer cell proliferation and colony formation, suggesting a tumor-suppressive role. Higher CXorf38 expression correlated with improved survival in patients with lung adenocarcinoma, but not in lung squamous cell carcinoma. Clinical data showed CXorf38 downregulation with lung cancer tissues of smokers, indicating a potential role in smoking-induced cancer progression and treatment. Functional analysis using bioinformatics linked CXorf38 to immune response regulation, suggesting involvement in the tumor immune microenvironment. Conclusions: Our study reveals for the first time that CXorf38 is a potential tumor suppressor, prognostic biomarker, and/or tumor immune regulator in lung adenocarcinoma—further research is warranted to explore its role in tumor immunity and its therapeutic potential. Full article
Show Figures

Figure 1

14 pages, 7234 KiB  
Article
Establishing Molecular Subgroups of CD8+ T Cell-Associated Genes in the Ovarian Cancer Tumour Microenvironment and Predicting the Immunotherapy Response
by Yunshu Zhu, Leilei Liang, Jian Li, Jia Zeng, Hongwen Yao and Lingying Wu
Biomedicines 2023, 11(9), 2399; https://doi.org/10.3390/biomedicines11092399 - 28 Aug 2023
Cited by 7 | Viewed by 2263
Abstract
Background: The mechanism by which infiltrating CD8+ T lymphocytes in the tumour microenvironment influence the survival of patients with ovarian cancer (OC) remains unclear. Methods: To identify biomarkers to optimise OC treatment, 13 immune-cell-line-associated datasets, RNA sequencing data, and clinical data from the [...] Read more.
Background: The mechanism by which infiltrating CD8+ T lymphocytes in the tumour microenvironment influence the survival of patients with ovarian cancer (OC) remains unclear. Methods: To identify biomarkers to optimise OC treatment, 13 immune-cell-line-associated datasets, RNA sequencing data, and clinical data from the GEO, TCGA, and the ICGC were collected. Gene expression in OC was assessed using quantitative reverse transcription polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) staining. Results: We identified 520 genes and three immunological clusters (IC1, IC2, and IC3) associated with CD8+ T cells. Higher IFN scores, immune T cell lytic activity, and immune cell infiltration and upregulated expression of immune-checkpoint-related genes indicated that IC3 is more responsive to immunotherapy, whereas IC1 and IC2 have a poorer prognosis. A 10-gene signature, including SEMA4F, CX3CR1, STX7, PASK, AKIRIN2, HEMGN, GBP5, NSG1, and CXorf65, was constructed, and a multivariate Cox regression analysis revealed a significant association between the 10-gene signature-based risk model and overall survival (p < 0.001). A nomogram was constructed with age and the 10-gene signature. Consistent with the bioinformatics analysis, IHC and qRT-PCR confirmed the accuracy of the signatures in OC tissue samples. The predictive ability of the risk model was demonstrated using the Imvigor210 immunotherapy dataset. Conclusions: The development of a novel gene signature associated with CD8+ T cells could facilitate more accurate prognostics and prediction of the immunotherapeutic response of patients with OC. Full article
Show Figures

Figure 1

6 pages, 1218 KiB  
Case Report
A Novel Look at Dosage-Sensitive Sex Locus Xp21.2 in a Case of 46,XY Partial Gonadal Dysgenesis without NR0B1 Duplication
by Ana Paula Francese-Santos, Jakob A. Meinel, Cristiane S. C. Piveta, Juliana G. R. Andrade, Beatriz A. Barros, Helena Fabbri-Scallet, Vera Lúcia Gil-da-Silva-Lopes, Gil Guerra-Junior, Axel Künstner, Hauke Busch, Olaf Hiort, Maricilda P. de Mello, Ralf Werner and Andréa T. Maciel-Guerra
Int. J. Mol. Sci. 2023, 24(1), 494; https://doi.org/10.3390/ijms24010494 - 28 Dec 2022
Cited by 5 | Viewed by 2404
Abstract
A region of 160 kb at Xp21.2 has been defined as dosage-sensitive sex reversal (DSS) and includes the NR0B1 gene, considered to be the candidate gene involved in XY gonadal dysgenesis if overexpressed. We describe a girl with 46,XY partial gonadal dysgenesis carrying [...] Read more.
A region of 160 kb at Xp21.2 has been defined as dosage-sensitive sex reversal (DSS) and includes the NR0B1 gene, considered to be the candidate gene involved in XY gonadal dysgenesis if overexpressed. We describe a girl with 46,XY partial gonadal dysgenesis carrying a 297 kb duplication at Xp21.2 upstream of NR0B1 initially detected by chromosomal microarray analysis. Fine mapping of the breakpoints by whole-genome sequencing showed a tandem duplication of TASL (CXorf21), GK and partially TAB3, upstream of NR0B1. This is the first description of an Xp21.2 duplication upstream of NR0B1 associated with 46,XY partial gonadal dysgenesis. Full article
(This article belongs to the Special Issue Molecular Genetics of Disorders of Sex Development)
Show Figures

Figure 1

21 pages, 1289 KiB  
Review
Omics and Male Infertility: Highlighting the Application of Transcriptomic Data
by Temidayo S. Omolaoye, Victor A. Omolaoye, Richard K. Kandasamy, Mahmood Yaseen Hachim and Stefan S. Du Plessis
Life 2022, 12(2), 280; https://doi.org/10.3390/life12020280 - 14 Feb 2022
Cited by 29 | Viewed by 6216
Abstract
Male infertility is a multifaceted disorder affecting approximately 50% of male partners in infertile couples. Over the years, male infertility has been diagnosed mainly through semen analysis, hormone evaluations, medical records and physical examinations, which of course are fundamental, but yet inefficient, because [...] Read more.
Male infertility is a multifaceted disorder affecting approximately 50% of male partners in infertile couples. Over the years, male infertility has been diagnosed mainly through semen analysis, hormone evaluations, medical records and physical examinations, which of course are fundamental, but yet inefficient, because 30% of male infertility cases remain idiopathic. This dilemmatic status of the unknown needs to be addressed with more sophisticated and result-driven technologies and/or techniques. Genetic alterations have been linked with male infertility, thereby unveiling the practicality of investigating this disorder from the “omics” perspective. Omics aims at analyzing the structure and functions of a whole constituent of a given biological function at different levels, including the molecular gene level (genomics), transcript level (transcriptomics), protein level (proteomics) and metabolites level (metabolomics). In the current study, an overview of the four branches of omics and their roles in male infertility are briefly discussed; the potential usefulness of assessing transcriptomic data to understand this pathology is also elucidated. After assessing the publicly obtainable transcriptomic data for datasets on male infertility, a total of 1385 datasets were retrieved, of which 10 datasets met the inclusion criteria and were used for further analysis. These datasets were classified into groups according to the disease or cause of male infertility. The groups include non-obstructive azoospermia (NOA), obstructive azoospermia (OA), non-obstructive and obstructive azoospermia (NOA and OA), spermatogenic dysfunction, sperm dysfunction, and Y chromosome microdeletion. Findings revealed that 8 genes (LDHC, PDHA2, TNP1, TNP2, ODF1, ODF2, SPINK2, PCDHB3) were commonly differentially expressed between all disease groups. Likewise, 56 genes were common between NOA versus NOA and OA (ADAD1, BANF2, BCL2L14, C12orf50, C20orf173, C22orf23, C6orf99, C9orf131, C9orf24, CABS1, CAPZA3, CCDC187, CCDC54, CDKN3, CEP170, CFAP206, CRISP2, CT83, CXorf65, FAM209A, FAM71F1, FAM81B, GALNTL5, GTSF1, H1FNT, HEMGN, HMGB4, KIF2B, LDHC, LOC441601, LYZL2, ODF1, ODF2, PCDHB3, PDHA2, PGK2, PIH1D2, PLCZ1, PROCA1, RIMBP3, ROPN1L, SHCBP1L, SMCP, SPATA16, SPATA19, SPINK2, TEX33, TKTL2, TMCO2, TMCO5A, TNP1, TNP2, TSPAN16, TSSK1B, TTLL2, UBQLN3). These genes, particularly the above-mentioned 8 genes, are involved in diverse biological processes such as germ cell development, spermatid development, spermatid differentiation, regulation of proteolysis, spermatogenesis and metabolic processes. Owing to the stage-specific expression of these genes, any mal-expression can ultimately lead to male infertility. Therefore, currently available data on all branches of omics relating to male fertility can be used to identify biomarkers for diagnosing male infertility, which can potentially help in unravelling some idiopathic cases. Full article
(This article belongs to the Collection Male Infertility: Current Knowledge and Future Perspectives)
Show Figures

Figure 1

6 pages, 1303 KiB  
Case Report
The Role of the Reanalysis of Genetic Test Results in the Diagnosis of Dysmorphic Syndrome Caused by Inherited Xq24 Deletion including the UBE2A and CXorf56 Genes
by Ewelina Wolańska, Agnieszka Pollak, Małgorzata Rydzanicz, Karolina Pesz, Magdalena Kłaniewska, Anna Rozensztrauch, Paweł Skiba, Piotr Stawiński, Rafał Płoski and Robert Śmigiel
Genes 2021, 12(3), 350; https://doi.org/10.3390/genes12030350 - 27 Feb 2021
Cited by 4 | Viewed by 2827
Abstract
Psychomotor delay, hypotonia, and intellectual disability, as well as heart defects, urogenital malformations, and characteristic cranio-facial dysmorphism are the main symptoms of dysmorphic syndrome associated with intergenic deletion in the Xq24 chromosome region including the UBE2A and CXorf56 genes. To date, there is [...] Read more.
Psychomotor delay, hypotonia, and intellectual disability, as well as heart defects, urogenital malformations, and characteristic cranio-facial dysmorphism are the main symptoms of dysmorphic syndrome associated with intergenic deletion in the Xq24 chromosome region including the UBE2A and CXorf56 genes. To date, there is limited information in the literature about the symptoms and clinical course of the Xq24 deletion. Here, we present a case of Xq24 deletion including the UBE2A and CXorf56 genes in a nine-year-old boy, in whom the array comparative genomic hybridization (array-CGH) and whole exome sequencing (WES) tests were performed in 2015 with normal results. The WES results were reanalyzed in 2019. Intergenic, hemizygous deletion in the Xq24 chromosome region including the UBE2A and CXorf56 genes was revealed and subsequently confirmed in the array-CGH study as the deletion of 35kb in the Xq24 region. Additionally, the carriership of deletion in the mother of the child was confirmed. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

13 pages, 1874 KiB  
Article
Characteristics of a Novel Target Antigen against Myeloma Cells for Immunotherapy
by Maiko Matsushita, Saku Saito, Shinya Yokoe, Daiju Ichikawa and Yutaka Hattori
Vaccines 2020, 8(4), 579; https://doi.org/10.3390/vaccines8040579 - 2 Oct 2020
Viewed by 3399
Abstract
Despite the availability of therapeutic treatments, multiple myeloma is an incurable haematological disorder. In this study, we aimed to clarify the role of CXorf48 as a therapeutic target in multiple myeloma. Based on a previously identified HLA-A*24:02-restiricted epitope from this novel cancer/testis antigen, [...] Read more.
Despite the availability of therapeutic treatments, multiple myeloma is an incurable haematological disorder. In this study, we aimed to clarify the role of CXorf48 as a therapeutic target in multiple myeloma. Based on a previously identified HLA-A*24:02-restiricted epitope from this novel cancer/testis antigen, we characterized the activities of cytotoxic T lymphocytes (CTLs) specific to this antigen against myeloma cells and evaluated the effects of demethylating agents in increasing antigen expression and enhancing the cytotoxic activity of CTLs. CXorf48 expression was examined by reverse transcription polymerase chain reaction (RT-PCR) using nine myeloma cell lines. Cell lines with low CXorf48 expression were treated by demethylating agents (DMAs), 5-azacytidine (5-aza), and 5-aza-2’-deoxycytidine (DAC) to evaluate gene expression using quantitative RT-PCR. Furthermore, CXorf48-specific CTLs were induced from peripheral blood mononuclear cells of HLA-A*24:02-positive healthy donors to evaluate antigen recognition using ELISpot and 51Cr cytotoxicity assays. CXorf48 was widely expressed in myeloma cells, and gene expression was significantly increased by DMAs. Furthermore, CXorf48-specific CTLs recognized DMA-treated myeloma cells. These findings suggest that CXorf48 is a useful target for immunotherapy, such as vaccination, in combination with demethylating agents for the treatment of patients with myeloma. Full article
(This article belongs to the Special Issue Cancer Immunotherapy: Advances and Future Prospects)
Show Figures

Figure 1

Back to TopTop