Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = CPR-FMN-domain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1223 KB  
Article
Heme Regulatory Motif of Heme Oxygenase-2 Is Involved in the Interaction with NADPH–Cytochrome P450 Reductase and Regulates Enzymatic Activity
by Masakazu Sugishima, Tomoichiro Kusumoto, Hideaki Sato, Hiroshi Sakamoto, Yuichiro Higashimoto, Ken Yamamoto and Junichi Taira
Int. J. Mol. Sci. 2025, 26(5), 2318; https://doi.org/10.3390/ijms26052318 - 5 Mar 2025
Cited by 2 | Viewed by 1386
Abstract
Mammalian heme oxygenase (HO) catalyzes heme degradation using reducing equivalents supplied by NADPH–cytochrome P450 reductase (CPR). The tertiary structure of the catalytic domain of a constitutively expressed isoform of HO, HO-2, resembles that of the inductive isoform, HO-1, whereas HO-2 has two heme [...] Read more.
Mammalian heme oxygenase (HO) catalyzes heme degradation using reducing equivalents supplied by NADPH–cytochrome P450 reductase (CPR). The tertiary structure of the catalytic domain of a constitutively expressed isoform of HO, HO-2, resembles that of the inductive isoform, HO-1, whereas HO-2 has two heme regulatory motifs (HRM) at the proximal portion of the C-terminus, where the disulfide linkage reflects cellular redox conditions and the second heme binding site is located. Here, we report the results of crosslinking experiments, which suggest that HRM is located near the FMN-binding domain of the CPR when it is complexed with HO-2. The enzymatic assay and reduction kinetics results suggest that heme-bound HRM negatively regulates HO-2 activity in vitro. Cellular redox conditions and free heme concentrations may regulate HO-2 activity. Full article
Show Figures

Figure 1

20 pages, 3360 KB  
Article
Single Mutations in Cytochrome P450 Oxidoreductase Can Alter the Specificity of Human Cytochrome P450 1A2-Mediated Caffeine Metabolism
by Francisco Esteves, Cristina M. M. Almeida, Sofia Silva, Inês Saldanha, Philippe Urban, José Rueff, Denis Pompon, Gilles Truan and Michel Kranendonk
Biomolecules 2023, 13(7), 1083; https://doi.org/10.3390/biom13071083 - 6 Jul 2023
Cited by 9 | Viewed by 3006
Abstract
A unique cytochrome P450 (CYP) oxidoreductase (CPR) sustains activities of human microsomal CYPs. Its function requires toggling between a closed conformation enabling electron transfers from NADPH to FAD and then FMN cofactors and open conformations forming complexes and transferring electrons to CYPs. We [...] Read more.
A unique cytochrome P450 (CYP) oxidoreductase (CPR) sustains activities of human microsomal CYPs. Its function requires toggling between a closed conformation enabling electron transfers from NADPH to FAD and then FMN cofactors and open conformations forming complexes and transferring electrons to CYPs. We previously demonstrated that distinct features of the hinge region linking the FAD and FMN domain (FD) modulate conformer poses and their interactions with CYPs. Specific FD residues contribute in a CYP isoform-dependent manner to the recognition and electron transfer mechanisms that are additionally modulated by the structure of CYP-bound substrate. To obtain insights into the underlying mechanisms, we analyzed how hinge region and FD mutations influence CYP1A2-mediated caffeine metabolism. Activities, metabolite profiles, regiospecificity and coupling efficiencies were evaluated in regard to the structural features and molecular dynamics of complexes bearing alternate substrate poses at the CYP active site. Studies reveal that FD variants not only modulate CYP activities but surprisingly the regiospecificity of reactions. Computational approaches evidenced that the considered mutations are generally in close contact with residues at the FD–CYP interface, exhibiting induced fits during complexation and modified dynamics depending on caffeine presence and orientation. It was concluded that dynamic coupling between FD mutations, the complex interface and CYP active site exist consistently with the observed regiospecific alterations. Full article
(This article belongs to the Special Issue New Insights into Cytochrome P450s)
Show Figures

Figure 1

27 pages, 3389 KB  
Article
Conformational Rearrangements in the Redox Cycling of NADPH-Cytochrome P450 Reductase from Sorghum bicolor Explored with FRET and Pressure-Perturbation Spectroscopy
by Bixia Zhang, ChulHee Kang and Dmitri R. Davydov
Biology 2022, 11(4), 510; https://doi.org/10.3390/biology11040510 - 25 Mar 2022
Cited by 5 | Viewed by 2930
Abstract
NADPH-cytochrome P450 reductase (CPR) from Sorghum bicolor (SbCPR) serves as an electron donor for cytochrome P450 essential for monolignol and lignin production in this biofuel crop. The CPR enzymes undergo an ample conformational transition between the closed and open states in their functioning. [...] Read more.
NADPH-cytochrome P450 reductase (CPR) from Sorghum bicolor (SbCPR) serves as an electron donor for cytochrome P450 essential for monolignol and lignin production in this biofuel crop. The CPR enzymes undergo an ample conformational transition between the closed and open states in their functioning. This transition is triggered by electron transfer between the FAD and FMN and provides access of the partner protein to the electron-donating FMN domain. To characterize the electron transfer mechanisms in the monolignol biosynthetic pathway better, we explore the conformational transitions in SbCPR with rapid scanning stop-flow and pressure-perturbation spectroscopy. We used FRET between a pair of donor and acceptor probes incorporated into the FAD and FMN domains of SbCPR, respectively, to characterize the equilibrium between the open and closed states and explore its modulation in connection with the redox state of the enzyme. We demonstrate that, although the closed conformation always predominates in the conformational landscape, the population of open state increases by order of magnitude upon the formation of the disemiquinone state. Our results are consistent with several open conformation sub-states differing in the volume change (ΔV0) of the opening transition. While the ΔV0 characteristic of the oxidized enzyme is as large as −88 mL/mol, the interaction of the enzyme with the nucleotide cofactor and the formation of the double-semiquinone state of CPR decrease this value to −34 and −18 mL/mol, respectively. This observation suggests that the interdomain electron transfer in CPR increases protein hydration, while promoting more open conformation. In addition to elucidating the functional choreography of plant CPRs, our study demonstrates the high exploratory potential of a combination of the pressure-perturbation approach with the FRET-based monitoring of protein conformational transitions. Full article
Show Figures

Figure 1

19 pages, 3425 KB  
Article
Interaction Modes of Microsomal Cytochrome P450s with Its Reductase and the Role of Substrate Binding
by Francisco Esteves, Philippe Urban, José Rueff, Gilles Truan and Michel Kranendonk
Int. J. Mol. Sci. 2020, 21(18), 6669; https://doi.org/10.3390/ijms21186669 - 11 Sep 2020
Cited by 13 | Viewed by 3287
Abstract
The activity of microsomal cytochromes P450 (CYP) is strictly dependent on the supply of electrons provided by NADPH cytochrome P450 oxidoreductase (CPR). The variant nature of the isoform-specific proximal interface of microsomal CYPs implies that the interacting interface between the two proteins is [...] Read more.
The activity of microsomal cytochromes P450 (CYP) is strictly dependent on the supply of electrons provided by NADPH cytochrome P450 oxidoreductase (CPR). The variant nature of the isoform-specific proximal interface of microsomal CYPs implies that the interacting interface between the two proteins is degenerated. Recently, we demonstrated that specific CPR mutations in the FMN-domain (FD) may induce a gain in activity for a specific CYP isoform. In the current report, we confirm the CYP isoform dependence of CPR’s degenerated binding by demonstrating that the effect of four of the formerly studied FD mutants are indeed exclusive of a specific CYP isoform, as verified by cytochrome c inhibition studies. Moreover, the nature of CYP’s substrate seems to have a modulating role in the CPR:CYP interaction. In silico molecular dynamics simulations of the FD evidence that mutations induces very subtle structural alterations, influencing the characteristics of residues formerly implicated in the CPR:CYP interaction or in positioning of the FMN moiety. CPR seems therefore to be able to form effective interaction complexes with its structural diverse partners via a combination of specific structural features of the FD, which are functional in a CYP isoform dependent manner, and dependent on the substrate bound. Full article
(This article belongs to the Special Issue Cytochromes P450: Drug Metabolism, Bioactivation and Biodiversity 3.0)
Show Figures

Figure 1

Back to TopTop