Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = CNS border-associated macrophages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1213 KB  
Review
The Meninges as CNS Interfaces and the Roles of Meningeal Macrophages
by Chihiro Hiraki and Fuminori Tsuruta
Biomolecules 2025, 15(4), 497; https://doi.org/10.3390/biom15040497 - 28 Mar 2025
Cited by 1 | Viewed by 3023
Abstract
The brain, the most important component of the central nervous system (CNS), is protected by multiple intricate barriers that strictly regulate the entry of proteins and cells. Thus, the brain is often described as an organ with immune privilege. Within the brain parenchyma, [...] Read more.
The brain, the most important component of the central nervous system (CNS), is protected by multiple intricate barriers that strictly regulate the entry of proteins and cells. Thus, the brain is often described as an organ with immune privilege. Within the brain parenchyma, microglia are thought to be the primary resident immune cells, with no other immune-related cells present under normal conditions. On the other hand, recent studies in the meningeal border regions have revealed the presence of meningeal-specific lymphatic vessels and channels that connect to the skull bone marrow. Importantly, resident macrophage populations specific to these boundary regions, known as CNS-associated macrophages (CAMs) or border-associated macrophages (BAMs), have been identified. In contrast to the brain parenchyma, the meninges contain many immune-related structures and cells, making them an important immune interface at the CNS border. CAMs serve a dual function, triggering immune responses under pathological conditions and supporting the maintenance of brain homeostasis. This review focuses on the immune architecture of the meninges and the roles of CAMs in humans and mice, summarizing and discussing recent advances in this field. Full article
(This article belongs to the Special Issue Crosstalk Between the Immune and Nervous Systems)
Show Figures

Figure 1

25 pages, 1388 KB  
Review
CNS Resident Innate Immune Cells: Guardians of CNS Homeostasis
by Luca Muzio and Jessica Perego
Int. J. Mol. Sci. 2024, 25(9), 4865; https://doi.org/10.3390/ijms25094865 - 29 Apr 2024
Cited by 13 | Viewed by 4989
Abstract
Although the CNS has been considered for a long time an immune-privileged organ, it is now well known that both the parenchyma and non-parenchymal tissue (meninges, perivascular space, and choroid plexus) are richly populated in resident immune cells. The advent of more powerful [...] Read more.
Although the CNS has been considered for a long time an immune-privileged organ, it is now well known that both the parenchyma and non-parenchymal tissue (meninges, perivascular space, and choroid plexus) are richly populated in resident immune cells. The advent of more powerful tools for multiplex immunophenotyping, such as single-cell RNA sequencing technique and upscale multiparametric flow and mass spectrometry, helped in discriminating between resident and infiltrating cells and, above all, the different spectrum of phenotypes distinguishing border-associated macrophages. Here, we focus our attention on resident innate immune players and their primary role in both CNS homeostasis and pathological neuroinflammation and neurodegeneration, two key interconnected aspects of the immunopathology of multiple sclerosis. Full article
Show Figures

Figure 1

16 pages, 895 KB  
Review
CNS Border-Associated Macrophages: Ontogeny and Potential Implication in Disease
by Iasonas Dermitzakis, Paschalis Theotokis, Paschalis Evangelidis, Efthymia Delilampou, Nikolaos Evangelidis, Anastasia Chatzisavvidou, Eleni Avramidou and Maria Eleni Manthou
Curr. Issues Mol. Biol. 2023, 45(5), 4285-4300; https://doi.org/10.3390/cimb45050272 - 13 May 2023
Cited by 38 | Viewed by 7686
Abstract
Being immune privileged, the central nervous system (CNS) is constituted by unique parenchymal and non-parenchymal tissue-resident macrophages, namely, microglia and border-associated macrophages (BAMs), respectively. BAMs are found in the choroid plexus, meningeal and perivascular spaces, playing critical roles in maintaining CNS homeostasis while [...] Read more.
Being immune privileged, the central nervous system (CNS) is constituted by unique parenchymal and non-parenchymal tissue-resident macrophages, namely, microglia and border-associated macrophages (BAMs), respectively. BAMs are found in the choroid plexus, meningeal and perivascular spaces, playing critical roles in maintaining CNS homeostasis while being phenotypically and functionally distinct from microglial cells. Although the ontogeny of microglia has been largely determined, BAMs need comparable scrutiny as they have been recently discovered and have not been thoroughly explored. Newly developed techniques have transformed our understanding of BAMs, revealing their cellular heterogeneity and diversity. Recent data showed that BAMs also originate from yolk sac progenitors instead of bone marrow-derived monocytes, highlighting the absolute need to further investigate their repopulation pattern in adult CNS. Shedding light on the molecular cues and drivers orchestrating BAM generation is essential for delineating their cellular identity. BAMs are receiving more attention since they are gradually incorporated into neurodegenerative and neuroinflammatory disease evaluations. The present review provides insights towards the current understanding regarding the ontogeny of BAMs and their involvement in CNS diseases, paving their way into targeted therapeutic strategies and precision medicine. Full article
(This article belongs to the Collection Feature Papers in Current Issues in Molecular Biology)
Show Figures

Figure 1

31 pages, 4172 KB  
Review
The Role of Osteopontin in Microglia Biology: Current Concepts and Future Perspectives
by Dennis-Dominik Rosmus, Clemens Lange, Franziska Ludwig, Bahareh Ajami and Peter Wieghofer
Biomedicines 2022, 10(4), 840; https://doi.org/10.3390/biomedicines10040840 - 3 Apr 2022
Cited by 50 | Viewed by 16675
Abstract
The innate immune landscape of the central nervous system (CNS), including the brain and the retina, consists of different myeloid cell populations with distinct tasks to fulfill. Whereas the CNS borders harbor extraparenchymal CNS-associated macrophages whose main duty is to build up a [...] Read more.
The innate immune landscape of the central nervous system (CNS), including the brain and the retina, consists of different myeloid cell populations with distinct tasks to fulfill. Whereas the CNS borders harbor extraparenchymal CNS-associated macrophages whose main duty is to build up a defense against invading pathogens and other damaging factors from the periphery, the resident immune cells of the CNS parenchyma and the retina, microglia, are highly dynamic cells with a plethora of functions during homeostasis and disease. Therefore, microglia are constantly sensing their environment and closely interacting with surrounding cells, which is in part mediated by soluble factors. One of these factors is Osteopontin (OPN), a multifunctional protein that is produced by different cell types in the CNS, including microglia, and is upregulated in neurodegenerative and neuroinflammatory conditions. In this review, we discuss the current literature about the interaction between microglia and OPN in homeostasis and several disease entities, including multiple sclerosis (MS), Alzheimer’s and cerebrovascular diseases (AD, CVD), amyotrophic lateral sclerosis (ALS), age-related macular degeneration (AMD) and diabetic retinopathy (DR), in the context of the molecular pathways involved in OPN signaling shaping the function of microglia. As nearly all CNS diseases are characterized by pathological alterations in microglial cells, accompanied by the disturbance of the homeostatic microglia phenotype, the emergence of disease-associated microglia (DAM) states and their interplay with factors shaping the DAM-signature, such as OPN, is of great interest for therapeutical interventions in the future. Full article
(This article belongs to the Special Issue 30 Years of OPN Milestones and Future Avenues)
Show Figures

Figure 1

14 pages, 3186 KB  
Article
Pial Vessel-Associated Microglia/Macrophages Increase in Female Dahl-SS/Jr Rats Independent of Pregnancy History
by Junie P. Warrington, Qingmei Shao, Ahsia M. Clayton, Kenji J. Maeda, Ashtin G. Beckett, Michael R. Garrett and Jennifer M. Sasser
Int. J. Mol. Sci. 2022, 23(6), 3384; https://doi.org/10.3390/ijms23063384 - 21 Mar 2022
Cited by 5 | Viewed by 3182
Abstract
As the resident immune cells of the central nervous system, microglia have a wide range of functions such as surveillance, phagocytosis, and signaling through production of chemokines and cytokines. Recent studies have identified and characterized macrophages residing at the meninges, a series of [...] Read more.
As the resident immune cells of the central nervous system, microglia have a wide range of functions such as surveillance, phagocytosis, and signaling through production of chemokines and cytokines. Recent studies have identified and characterized macrophages residing at the meninges, a series of layers surrounding the brain and spinal cord. While perivascular microglia within the brain parenchyma increase following chronic hypertension, there are no reports of changes at the meninges, and specifically, associated with the pial vasculature. Thus, we used female Sprague Dawley and Dahl salt-sensitive (SS/Jr) rat brains, stained for ionized calcium-binding adapter molecule (Iba1), and characterized microglia/macrophages associated with pial vessels in the posterior brain. Results indicate that Iba1+ pial vessel-associated microglia (PVAM) completely surrounded the vessels in brains from the Dahl-SS/Jr rats. PVAM density was significantly higher and distance between PVAMs lower in Dahl-SS/Jr compared to the Sprague Dawley rat brains. Pregnancy history did not affect these findings. While the functional role of these cells are not known, we contextualize our novel findings with that of other studies assessing or characterizing myeloid cells at the borders of the CNS (meninges and choroid plexus) and perivascular macrophages and propose their possible origin in the Dahl-SS/Jr model of chronic hypertension. Full article
(This article belongs to the Special Issue New Advance in Neuroinflammation)
Show Figures

Figure 1

Back to TopTop