Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (81)

Search Parameters:
Keywords = CLAVATA1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 3660 KB  
Article
It’s a Spider-Eat-Spider World: Observations of Nonsexual Cannibalism in the Invasive Jorō Spider Trichonephila clavata
by Andrew K. Davis, Andre Leo, Kade Stewart, Caitlin Phelan and Alexa Schultz
Arthropoda 2025, 3(3), 11; https://doi.org/10.3390/arthropoda3030011 - 10 Jul 2025
Viewed by 877
Abstract
Spiders and other arthropods can sometimes consume others of their kind, and this is most often associated with mating activity, whereby females cannibalize males during or after mating, or during mating attempts. Nonsexual cannibalism is less common but may be associated with food [...] Read more.
Spiders and other arthropods can sometimes consume others of their kind, and this is most often associated with mating activity, whereby females cannibalize males during or after mating, or during mating attempts. Nonsexual cannibalism is less common but may be associated with food availability or territorial aggression. In the Southeastern United States, a non-native orb-weaving spider, Trichonephila clavata (the “jorō spider”), is expanding its range. Prior lab experiments indicated this species to be “shy” compared to other native spiders, based on behavioral reactions to stimuli. Here, we report descriptive observations and photo-documentation of nonsexual cannibalism by this species, including from anecdotal observations, plus findings from controlled pairings of spiders, both in the lab and in natural webs in the field. In the cases where cannibalism was witnessed, it involved one female biting and killing another, typically after a short fight. When two females of a similar size were placed together in a container (n = 25 trials), fights ensued 40% of the time. When females of different sizes were paired (n = 27 trials), fights happened 18% of the time, and the larger females were not always the aggressor. Across all the lab trials (n = 52), six bouts (9%) led to the direct killing of one female. In field trials where two females were placed on an empty web (n = 14 trials), we observed one fight (7%) where the aggressor ended up killing and wrapping the other spider in silk. Given that some of these instances happened away from any web, these observations imply that the aggression is not necessarily an act of territoriality. The intraspecific aggression could arise when females are provoked or stressed, which deserves more study. Full article
Show Figures

Figure 1

17 pages, 2876 KB  
Article
Genetic Analyses, BSA-Seq, and Transcriptome Analyses Reveal Candidate Genes Controlling Leaf Plastochron in Rapeseed (Brassica napus L.)
by Mengfan Qin, Xiang Liu, Jia Song, Feixue Zhao, Yiji Shi, Yu Xu, Zhiting Guo, Tianye Zhang, Jiapeng Wu, Jinxiong Wang, Wu Li, Keqi Li, Shimeng Li, Zhen Huang and Aixia Xu
Plants 2025, 14(11), 1719; https://doi.org/10.3390/plants14111719 - 5 Jun 2025
Viewed by 553
Abstract
The leaf plastochron serves as an indicator of the rate of leaf appearance, biomass accumulation, and branch number, while also impacting plant architecture and seed yield. However, research on the leaf plastochron of crops remains limited. In this study, 2116C exhibited a rapid [...] Read more.
The leaf plastochron serves as an indicator of the rate of leaf appearance, biomass accumulation, and branch number, while also impacting plant architecture and seed yield. However, research on the leaf plastochron of crops remains limited. In this study, 2116C exhibited a rapid leaf plastochron compared to ZH18 during both rosette and bud periods. There were significant positive correlations among the leaf plastochron and primary branch number of the F2 populations (r ranging from 0.395 to 0.635, p < 0.01). Genetic analyses over two years demonstrated that two equally dominant genes might govern the leaf plastochron. Through bulk segregant analysis sequencing (BSA-seq), three novel genomic intervals were identified on chromosomes A02 (9.04–9.48 Mb and 13.52–13.66 Mb) and A04 (19.84–20.14 Mb) of ZS11 and Darmor-bzh reference genomes. By gene functional annotations, single-nucleotide variation (SNV) analyses, transcriptome data from parents, genetic progeny, and natural accessions, we identified ten candidate genes within the intervals, including FLOWERING LOCUS T, RGL1, MYB-like, CYP96A8, BLH3, NIT2, ASK6, and three CLAVATA3/ESR (CLE)-related genes. These findings lay the molecular foundation for further exploration into the leaf plastochron and the implications in plastochron-related breeding in rapeseed. Full article
(This article belongs to the Special Issue Crop Functional Genomics and Biological Breeding—2nd Edition)
Show Figures

Figure 1

15 pages, 3045 KB  
Article
The Peptide-Encoding CLE25 Gene Modulates Drought Response in Cotton
by Dayong Zhang, Qingfeng Zhu, Pu Qin, Lu Yu, Weixi Li and Hao Sun
Agriculture 2025, 15(11), 1226; https://doi.org/10.3390/agriculture15111226 - 4 Jun 2025
Viewed by 592
Abstract
CLAVATA3 (CLV3)/endosperm surrounding region (CLE) peptides have been reportedly involved in plant growth and development, as well as responses to abiotic stresses. However, the stress resilience of most CLE genes in cotton remains largely unknown. Here, induced expression pattern analysis showed that GhCLE25 [...] Read more.
CLAVATA3 (CLV3)/endosperm surrounding region (CLE) peptides have been reportedly involved in plant growth and development, as well as responses to abiotic stresses. However, the stress resilience of most CLE genes in cotton remains largely unknown. Here, induced expression pattern analysis showed that GhCLE25 was obviously responsive to osmotic and salt treatments, indicating that GhCLE25 was involved in abiotic stress tolerance. Furthermore, silencing GhCLE25 or the exogenous application of CLE25p effectively led to reduced and enhanced drought tolerance, respectively, as indicated by the activities of the plants’ POD, SOD, CAT, and MDA contents, as well as their height and fresh weight. We found that the knockdown of GhCLE25 promoted seedling growth and development, with a higher plant height and fresh weight in GhCLE25-silenced plants in comparison to control plants. In addition, a comparative transcriptome analysis of TRV:00 versus TRV:GhCLE25 and Mock versus CLE25p revealed that the CLE25-mediated signaling pathway is mainly involved in defense response and phytohormone signaling. Collectively, these findings indicate diverse roles of CLE25 in regulating plant growth and response to environmental stimuli and highlight the potential utilization of CLE25 to improve drought stress in modern agriculture via CLE25p spraying. Full article
Show Figures

Figure 1

19 pages, 8437 KB  
Review
Research Progress of CLE and Its Prospects in Woody Plants
by Zewen Song, Wenjun Zhou, Hanyu Jiang and Yifan Duan
Plants 2025, 14(10), 1424; https://doi.org/10.3390/plants14101424 - 9 May 2025
Viewed by 621
Abstract
The peptide ligands of the CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) family have been previously identified as essential signals for both short- and long-distance communication in plants, particularly during stem cell homeostasis, cell fate determination, and growth and development. To date, most studies on the [...] Read more.
The peptide ligands of the CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) family have been previously identified as essential signals for both short- and long-distance communication in plants, particularly during stem cell homeostasis, cell fate determination, and growth and development. To date, most studies on the CLE family have focused on model plants and especially those involving stem and apical meristems. Relatively little is known about the role of CLE peptides in tall trees and other plant meristems. In this review, we summarize the role of CLE genes in regulating plant Root Apical Meristem (RAM), Shoot Apical Meristem (SAM), Procambium, Leaf and Floral Meristem (FM), as well as their involvement in multiple signaling pathways. We also highlight the evolutionary conservation of the CLE gene family and provide a comprehensive summary of its distribution across various plant developmental tissues. This paper aims to provide insights into novel regulatory networks of CLE in plant meristems, offering guidance for understanding intercellular signaling pathways in forest trees and the development of new plant organs. Full article
Show Figures

Figure 1

13 pages, 1362 KB  
Article
Explosive Growth of the Jorō Spider (Trichonephila clavata (L. Koch): Araneae: Araneidae) and Concurrent Decline of Native Orbweaving Spiders in Atlanta, Georgia Forests at the Forefront of the Jorō Spider’s Invasive Spread
by Robert W. Pemberton
Insects 2025, 16(5), 443; https://doi.org/10.3390/insects16050443 - 23 Apr 2025
Viewed by 740
Abstract
The Jorō spider (Trichonephila clavata (L. Koch): Araneae: Araneidae), an invasive species from Asia, and native orbweaving spiders were censused at 25 forest sites in the Atlanta, Georgia, region at the forefront of the Jorō spider’s spread from 2022 through 2024. The [...] Read more.
The Jorō spider (Trichonephila clavata (L. Koch): Araneae: Araneidae), an invasive species from Asia, and native orbweaving spiders were censused at 25 forest sites in the Atlanta, Georgia, region at the forefront of the Jorō spider’s spread from 2022 through 2024. The Jorō spider was found in all 25 sites in all three years, doubling in abundance each year. In 2022, the number of Jorō spiders found was 444 or 16.34 per hour of census. This doubled in 2023 to 859 or 30.54 per hour. The Jorō numbers doubled again in 2024 to 1713 or 59.14 per hour. This contrasts markedly with the seven species of native orbweavers found during the censuses, which declined by ca. 40% each year. In 2022, 52 or 1.72 individuals per hour of six native orbweaver species were found at 18 sites. In 2023, the number dropped to 32 or 1.06 individuals per hour of six species found at 11 sites. In 2024, the number further declined to 18 or 0.55 individuals of six species found at eight sites. The Jorō spider’s spread and rapid increase in abundance may disrupt trophic networks and negatively influence the abundance of both native orbweavers and flying insect species. Full article
(This article belongs to the Section Other Arthropods and General Topics)
Show Figures

Figure 1

13 pages, 4261 KB  
Article
Involvement of the Methyltransferase CcLaeA in Regulating Laccase Production in Curvularia clavata J1
by Changyu Pi, Jinyang Li, Fangting Jiang, Jintong Zhang, Tongtong Bao, Shengguo Zhao and Guoshun Chen
Fermentation 2025, 11(4), 178; https://doi.org/10.3390/fermentation11040178 - 31 Mar 2025
Cited by 1 | Viewed by 631
Abstract
Laccases are synthesized by a diverse range of fungi. Nevertheless, despite the industrial significance of laccases, the regulatory mechanism governing laccase production has been relatively understudied. This research aims to explore the regulatory function of the methyltransferase CcLaeA in laccase biosynthesis using the [...] Read more.
Laccases are synthesized by a diverse range of fungi. Nevertheless, despite the industrial significance of laccases, the regulatory mechanism governing laccase production has been relatively understudied. This research aims to explore the regulatory function of the methyltransferase CcLaeA in laccase biosynthesis using the newly isolated fungal strain Curvularia clavata J1. Through CRISPR-Cas9-mediated gene disruption, the deletion of CclaeA led to a 1.5-fold increase in extracellular laccase activity in the ΔCclaeA mutant when compared to the wild-type strain. This finding indicates that CcLaeA functions as a transcriptional repressor of laccase biosynthesis. Transcriptomic analysis demonstrated that CcLaeA does not directly regulate the expression of laccase genes. Instead, it modulates genes associated with hydrolases and peptidases. This modulation potentially reduces the enzymatic degradation of laccase at the protein level. This study significantly enhances our understanding of fungal laccase regulation. By establishing a connection between the deletion of CclaeA and the improvement of enzyme stability and activity, this research offers practical insights for engineering fungal strains to optimize laccase yields for bioremediation and biofuel applications. Furthermore, the integration of targeted gene knockout with multi-omics validation sets up a methodological framework for investigating regulatory networks in non-model fungi. This framework is expected to accelerate the development of sustainable biocatalysts, thereby contributing to the advancement of biotechnology in various industrial sectors. Full article
Show Figures

Figure 1

25 pages, 14640 KB  
Article
Genome-Wide Identification and Functional Analysis of CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) in Three Populus Species
by Zheng Li, Feng-Xin Chen, Ming-Ming Li, Xian-Li Tang, Yu-Qi Liu, Meng-Bo Huang, Hao-Qiang Niu, Chao Liu, Hou-Ling Wang, Xin-Li Xia and Wei-Lun Yin
Int. J. Mol. Sci. 2025, 26(5), 1944; https://doi.org/10.3390/ijms26051944 - 24 Feb 2025
Viewed by 863
Abstract
Intercellular communication mediated by CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptides and their receptors is crucial for plant development and environmental adaptation. In this study, 45 and 89 CLEs were identified in Populus tomentosa and Populus alba × Populus glandulosa, respectively, and, together with [...] Read more.
Intercellular communication mediated by CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptides and their receptors is crucial for plant development and environmental adaptation. In this study, 45 and 89 CLEs were identified in Populus tomentosa and Populus alba × Populus glandulosa, respectively, and, together with the 52 CLEs in Populus trichocarpa, the chromosome localization, gene and protein characteristics, collinearity and gene duplication events, cis-acting regulatory elements in promoters and evolutionary relationships of CLEs in these three poplar species were analyzed. The CLEs of three poplar species were divided into four subfamilies. Among them, the CLEs in subfamilies I, II and IV were A-type CLEs, while those in subfamily III were B-type CLEs. During the evolutionary process of poplar, the selection pressure faced by whole-genome duplication or segmental duplication was purifying selection, and the duplication events led to the expansion of the CLE family in poplar. The exogenous addition of a certain concentration of poplar CLE13 peptides inhibits the root growth of Arabidopsis thaliana and poplar and simultaneously reduces the expression levels of ARFs and LBDs in the roots. In addition, drought stress induces the expression of PtrCLE13A. The overexpression of preCLE13A significantly enhances the osmotic and drought tolerance in Populus tomentosa. These results have provided valuable information for further research on the molecular mechanisms of CLE peptide signaling pathways in the woody model plant poplar regarding plant growth and stress resistance. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

14 pages, 2283 KB  
Article
Molecular and Proteomic Analyses of Effects of Cadmium Exposure on the Silk Glands of Trichonephila clavata
by Zhaowentao Song, Zhiyu Song, Wei Liu and Bo Lyu
Int. J. Mol. Sci. 2025, 26(2), 754; https://doi.org/10.3390/ijms26020754 - 17 Jan 2025
Viewed by 948
Abstract
Cadmium (Cd) is a pervasive heavy metal pollutant released into the environment through industrial activities such as mining, smelting, and agricultural runoff. This study aimed to investigate the molecular and metabolic impacts of Cd exposure on the silk glands of Trichonephila clavata, [...] Read more.
Cadmium (Cd) is a pervasive heavy metal pollutant released into the environment through industrial activities such as mining, smelting, and agricultural runoff. This study aimed to investigate the molecular and metabolic impacts of Cd exposure on the silk glands of Trichonephila clavata, a species renowned for producing silk with exceptional mechanical properties. Cd accumulation in spider bodies and silk glands was significantly higher in the low- and high-Cd groups compared to controls, with a dose- and time-dependent increase. Oxidative stress markers, including superoxide dismutase, glutathione peroxidase, peroxidase, and malondialdehyde, were significantly elevated, indicating a robust stress response. Proteomic analysis identified 2498 proteins, with 227 differentially expressed between Cd-treated and control groups. Key metabolic pathways, including glutathione metabolism, cysteine and methionine metabolism, and amino acid biosynthesis, were significantly disrupted. Downregulation of enzymes such as glutathione synthase and S-adenosylmethionine synthetase highlighted oxidative imbalance and impaired sulfur metabolism, indicating disruptions in redox homeostasis and energy metabolism critical for silk production. These findings demonstrate that Cd exposure alters oxidative stress responses, disrupts key metabolic pathways, and impairs silk gland functionality at multiple molecular levels. This study advances the understanding of the impact of heavy metal stress on spider physiology and provides a foundation for further research on the ecological implications of Cd contamination. Full article
Show Figures

Figure 1

12 pages, 5263 KB  
Article
Functional Analysis of CLE26 in Controlling De Novo Root Regeneration from Detached Arabidopsis Leaves
by Geng Zhang, Yuxuan Du, Xinying Wang, Yuge Zhang, Shili Zhang, Mingyang Li, Xiaojuan Li and Guifang Zhang
Int. J. Mol. Sci. 2024, 25(23), 13156; https://doi.org/10.3390/ijms252313156 - 7 Dec 2024
Cited by 1 | Viewed by 1233
Abstract
De novo root regeneration is the process by which adventitious roots form around the wound site from wounded or detached plant organs. The de novo root regeneration process has been widely exploited in cutting technology used for vegetative propagation. Here, we employed detached [...] Read more.
De novo root regeneration is the process by which adventitious roots form around the wound site from wounded or detached plant organs. The de novo root regeneration process has been widely exploited in cutting technology used for vegetative propagation. Here, we employed detached leaf explants from Arabidopsis thaliana to form adventitious roots for studying the process of de novo root regeneration. GUS staining showed that the expression of CLAVATA3/EMBRYO SURROUNDING REGION-RELATED26(CLE26) was gradually increased surrounding the wound site of leaf explants during adventitious root formation. Semi-thin sections further showed that the expression pattern of CLE26 was closely linked to the formation of adventitious roots. Next, genetic analyses confirmed that the CLE26 gene was involved in de novo root regeneration. Furthermore, RNA sequencing (RNA-seq) of the leaf explants revealed that stress-related genes might be involved in CLE26-mediated adventitious root formation. Specifically, genes associated with the hydrogen peroxide catabolic process and oxidative stress response were predominantly upregulated in the cle26 mutant. In contrast, genes involved in the response to salicylic acid were largely downregulated in the cle26 mutant. Overall, our study indicates that the mutation in CLE26 might upregulate the expression of genes involved in reactive oxygen species metabolism or suppress the expression of genes associated with salicylic acid synthesis, thus promoting the formation of adventitious roots. These findings suggest that CLE26 is a potential candidate for the genetic improvement of adventitious rooting in cuttings. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

15 pages, 5434 KB  
Article
High Absorption and Elasticity of a Novel Transgenic Silk with Egg Case Silk Protein from Nephila clavata
by Yichen Wang, Yuhang Lin, Yongkang Luo, Di Zeng, Haibo He and Tianfu Zhao
Int. J. Mol. Sci. 2024, 25(23), 12793; https://doi.org/10.3390/ijms252312793 - 28 Nov 2024
Viewed by 932
Abstract
Spider silk is part of a special class of natural protein fibers that have high strength and toughness: these materials have excellent comprehensive properties that are not found in other natural fibers (including silk) or most synthetic fibers. Spider egg case filaments have [...] Read more.
Spider silk is part of a special class of natural protein fibers that have high strength and toughness: these materials have excellent comprehensive properties that are not found in other natural fibers (including silk) or most synthetic fibers. Spider egg case filaments have good hardness, can resist water, can protect spider eggs from external threats, have a significantly high initial modulus and high moisture absorption rate, and are expected to be used as a new generation of environmentally friendly natural polymer fibers and biomaterials. However, spiders are predatory and difficult to rear in large numbers, and it is also difficult to obtain spider egg case filaments in large quantities. Silkworms and spiders have a similar spinning system, and the use of transgenic technology in silkworms can obtain stable and high-yield exogenous gene proteins for a long time, representing an ideal bioreactor for the production of spider silk. In this study, the eukaryotic bioreactor and piggyBac transposon system were employed to recombinantly introduce the egg case silk protein of Nephila clavata (Nc-CYSP1) into the silkworm in the silkworm heavy-chain expression system. The results revealed that the silk glands produced a new type of transgenic silk with a significantly high initial modulus and high moisture absorption. In summary, this study provides an experimental reference for future research on the large-scale production and application of spider egg case filamentous protein, with great application prospects in the development of new environmentally friendly materials. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

9 pages, 1977 KB  
Article
Genome-Wide Identification and Expression Analysis of the CLAVATA3/ESR-Related Gene Family in Tiger Nut
by Maria Gancheva, Nina Kon’kova, Alla Solovyeva, Lavrentii Danilov, Konstantin Gusev and Ludmila Lutova
Int. J. Plant Biol. 2024, 15(4), 1054-1062; https://doi.org/10.3390/ijpb15040074 - 18 Oct 2024
Viewed by 1106
Abstract
CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR)-related (CLE) genes encode a group of peptide hormones, which coordinate cell proliferation and differentiation in plants. Tiger nut (Cyperus esculentus L.) is a perennial monocot plant that produces oil-rich tubers. [...] Read more.
CLAVATA3 (CLV3)/EMBRYO SURROUNDING REGION (ESR)-related (CLE) genes encode a group of peptide hormones, which coordinate cell proliferation and differentiation in plants. Tiger nut (Cyperus esculentus L.) is a perennial monocot plant that produces oil-rich tubers. However, the mechanisms regulating tuber development in tiger nut are poorly understood, and nothing is known about CLE genes in tiger nut. In this study, we identified 34 CLE genes in the genomes, proteomes, and transcriptomes of C. esculentus (CeCLE). We analyzed their gene structures and expression profiles in different parts of the plant, at three stages of tuber development and in roots in response to dehydration stress. We found a relatively high expression level of CeCLE13 in growing tuber and suggested that the corresponding CLE peptide could be involved in the regulation of tuberization. We also analyzed CeCLE gene sequences in the genome of the most productive K-17 variety in the N. I. Vavilov All-Russian Institute of Plant Genetic Resources collection and found many single nucleotide polymorphisms, insertions, and deletions. Our data provides fundamental information for future research on tiger nut growth and tuberization. Full article
(This article belongs to the Section Plant Biochemistry and Genetics)
Show Figures

Figure 1

7 pages, 6370 KB  
Communication
Recruitment of the Basket Star Astrospartus mediterraneus (Risso, 1826) (Ophiuroidea, Gorgonocephalidae)
by Martina Canessa, Egidio Trainito and Giorgio Bavestrello
Diversity 2024, 16(9), 528; https://doi.org/10.3390/d16090528 - 1 Sep 2024
Viewed by 836
Abstract
The occurrence and abundance of Astrospartus mediterraneus (Risso, 1826) have significantly increased in the last three decades in several areas of the Mediterranean Sea. In the Tavolara–Punta Coda Cavallo Marine Protected Area (NE Sardinia, Tyrrhenian Sea, Mediterranean Sea), 60 specimens were observed mainly [...] Read more.
The occurrence and abundance of Astrospartus mediterraneus (Risso, 1826) have significantly increased in the last three decades in several areas of the Mediterranean Sea. In the Tavolara–Punta Coda Cavallo Marine Protected Area (NE Sardinia, Tyrrhenian Sea, Mediterranean Sea), 60 specimens were observed mainly on the granitic shoals of the Tavolara Channel, an area characterized by very intense currents and high sedimentation. The basket stars were mainly found living as epibionts of gorgonians (Eunicella verrucosa, Paramuricea clavata and Leptogorgia sarmentosa) and massive sponges (Spongia officinalis, S. lamella, Sarcotragus foetidus). We also documented 21 small specimens (3–20 mm in diameter of the oral disc) observed in June 2024 between 27 and 52 m depth on E. verrucosa and P. clavata colonies. The bimodal size-frequency distribution of these specimens suggested that, probably, specimens belong to two different reproductive events occurring in spring 2023 and 2024. Full article
(This article belongs to the Special Issue Deep-Sea Echinoderms of the European Seas)
Show Figures

Figure 1

13 pages, 4826 KB  
Article
CLAVATA3 Signaling Buffers Arabidopsis Shoot Apical Meristem Activity in Response to Photoperiod
by Jennifer C. Fletcher
Int. J. Mol. Sci. 2024, 25(17), 9357; https://doi.org/10.3390/ijms25179357 - 29 Aug 2024
Viewed by 1587
Abstract
Land plants grow throughout their life cycle via the continuous activity of stem cell reservoirs contained within their apical meristems. The shoot apical meristem (SAM) of Arabidopsis and other land plants responds to a variety of environmental cues, yet little is known about [...] Read more.
Land plants grow throughout their life cycle via the continuous activity of stem cell reservoirs contained within their apical meristems. The shoot apical meristem (SAM) of Arabidopsis and other land plants responds to a variety of environmental cues, yet little is known about the response of meristems to seasonal changes in day length, or photoperiod. Here, the vegetative and reproductive growth of Arabidopsis wild-type and clavata3 (clv3) plants in different photoperiod conditions was analyzed. It was found that SAM size in wild-type Arabidopsis plants grown in long-day (LD) conditions gradually increased from embryonic to reproductive development. clv3 plants produced significantly more leaves as well as larger inflorescence meristems and more floral buds than wild-type plants in LD and short-day (SD) conditions, demonstrating that CLV3 signaling limits vegetative and inflorescence meristem activity in both photoperiods. The clv3 phenotypes were more severe in SDs, indicating a greater requirement for CLV3 restriction of SAM function when the days are short. In contrast, clv3 floral meristem size and carpel number were unchanged between LD and SD conditions, which shows that the photoperiod does not affect the regulation of floral meristem activity through the CLV3 pathway. This study reveals that CLV3 signaling specifically restricts vegetative and inflorescence meristem activity in both LD and SD photoperiods but plays a more prominent role during short days. Full article
(This article belongs to the Special Issue Plant Meristem Structure and Function)
Show Figures

Figure 1

21 pages, 4589 KB  
Article
Variation in the Health Status of the Mediterranean Gorgonian Forests: The Synergistic Effect of Marine Heat Waves and Fishing Activity
by Martina Canessa, Rosella Bertolotto, Federico Betti, Marzia Bo, Alessandro Dagnino, Francesco Enrichetti, Margherita Toma and Giorgio Bavestrello
Biology 2024, 13(8), 642; https://doi.org/10.3390/biology13080642 - 21 Aug 2024
Cited by 1 | Viewed by 1658
Abstract
Over the past thirty years, the red gorgonian Paramuricea clavata in the Mediterranean Sea has faced increasing threats, including heat waves and human activities such as artisanal and recreational fishing. Epibiosis on damaged gorgonian colonies is generally used as an indirect indication of [...] Read more.
Over the past thirty years, the red gorgonian Paramuricea clavata in the Mediterranean Sea has faced increasing threats, including heat waves and human activities such as artisanal and recreational fishing. Epibiosis on damaged gorgonian colonies is generally used as an indirect indication of stressed conditions. The density and height of P. clavata and the percentage of colonies affected by epibiosis and entangled in lost fishing gear were monitored to investigate the phenomenon and its trend over time in the Ligurian Sea. Analyses were based on transects collected during ROV campaigns between 2015 and 2022 at depths of 33–90 m. A strong correlation was observed between fishing efforts in the study area and the level of epibiosis. Maximal percentages of colonies affected by epibiosis and entanglement were recorded at depths of 50–70 m. Temporally, marine heat waves before 2019 were identified as the primary cause of damage to P. clavata. The decrease in epibiosis percentages after 2019, despite the 2022 heat wave, may be due to a quick recovery ability of the populations and a reduction in fishing activities during the COVID-19 lockdown in 2020. Long-term monitoring programmes are essential to understand the changes in marine benthic communities exposed to different stressors. Full article
(This article belongs to the Special Issue Epibiosis in Aquatic Environments)
Show Figures

Figure 1

18 pages, 8812 KB  
Article
Uncovering PheCLE1 and PheCLE10 Promoting Root Development Based on Genome-Wide Analysis
by Changhong Mu, Wenlong Cheng, Hui Fang, Ruiman Geng, Jutang Jiang, Zhanchao Cheng and Jian Gao
Int. J. Mol. Sci. 2024, 25(13), 7190; https://doi.org/10.3390/ijms25137190 - 29 Jun 2024
Cited by 2 | Viewed by 1326
Abstract
Moso bamboo (Phyllostachys edulis), renowned for its rapid growth, is attributed to the dynamic changes in its apical meristem. The CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) family genes are known to play crucial roles in regulating meristem and organ formation in model plants, [...] Read more.
Moso bamboo (Phyllostachys edulis), renowned for its rapid growth, is attributed to the dynamic changes in its apical meristem. The CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) family genes are known to play crucial roles in regulating meristem and organ formation in model plants, but their functions in Moso bamboo remain unclear. Here, we conducted a genome-wide identification of the CLE gene family of Moso bamboo and investigated their gene structure, chromosomal localization, evolutionary relationships, and expression patterns. A total of 11 PheCLE genes were identified, all of which contained a conserved CLE peptide core functional motif (Motif 1) at their C-termini. Based on Arabidopsis classification criteria, these genes were predominantly distributed in Groups A–C. Collinearity analysis unveiled significant synteny among CLE genes in Moso bamboo, rice, and maize, implying potential functional conservation during monocot evolution. Transcriptomic analysis showed significant expression of these genes in the apical tissues of Moso bamboo, including root tips, shoot tips, rhizome buds, and flower buds. Particularly, single-cell transcriptomic data and in situ hybridization further corroborated the heightened expression of PheCLE1 and PheCLE10 in the apical tissue of basal roots. Additionally, the overexpression of PheCLE1 and PheCLE10 in rice markedly promoted root growth. PheCLE1 and PheCLE10 were both located on the cell membrane. Furthermore, the upstream transcription factors NAC9 and NAC6 exhibited binding affinity toward the promoters of PheCLE1 and PheCLE10, thereby facilitating their transcriptional activation. In summary, this study not only systematically identified the CLE gene family in Moso bamboo for the first time but also emphasized their central roles in apical tissue development. This provides a valuable theoretical foundation for the further exploration of functional peptides and their signaling regulatory networks in bamboo species. Full article
Show Figures

Figure 1

Back to TopTop