Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = Bursera morelensis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 3254 KiB  
Review
Plant Extracts as Skin Care and Therapeutic Agents
by Monika Michalak
Int. J. Mol. Sci. 2023, 24(20), 15444; https://doi.org/10.3390/ijms242015444 - 22 Oct 2023
Cited by 81 | Viewed by 27929
Abstract
Natural ingredients have been used for centuries for skin treatment and care. Interest in the health effects of plants has recently increased due to their safety and applicability in the formulation of pharmaceuticals and cosmetics. Long-known plant materials as well as newly discovered [...] Read more.
Natural ingredients have been used for centuries for skin treatment and care. Interest in the health effects of plants has recently increased due to their safety and applicability in the formulation of pharmaceuticals and cosmetics. Long-known plant materials as well as newly discovered ones are increasingly being used in natural products of plant origin. This review highlights the beneficial effects of plants and plant constituents on the skin, including moisturizing (e.g., Cannabis sativa, Hydrangea serrata, Pradosia mutisii and Carthamus tinctorius), anti-aging (e.g., Aegopodium podagraria, Euphorbia characias, Premna odorata and Warburgia salutaris), antimicrobial (e.g., Betula pendula and Epilobium angustifolium), antioxidant (e.g., Kadsura coccinea, Rosmarinus officinalis, Rubus idaeus and Spatholobus suberectus), anti-inflammatory (e.g., Antidesma thwaitesianum, Helianthus annuus, Oenanthe javanica, Penthorum chinense, Ranunculus bulumei and Zanthoxylum bungeanum), regenerative (e.g., Aloe vera, Angelica polymorpha, Digitaria ciliaris, Glycyrrihza glabra and Marantodes pumilum), wound healing (e.g., Agrimonia eupatoria, Astragalus floccosus, Bursera morelensis, Jatropha neopauciflora and Sapindus mukorossi), photoprotective (e.g., Astragalus gombiformis, Calea fruticose, Euphorbia characias and Posoqueria latifolia) and anti-tyrosinase activity (e.g., Aerva lanata, Bruguiera gymnorhiza, Dodonaea viscosa, Lonicera japonica and Schisandra chinensis), as well as their role as excipients in cosmetics (coloring (e.g., Beta vulgaris, Centaurea cyanus, Hibiscus sabdariffa and Rubia tinctiorum), protective and aromatic agents (e.g., Hyssopus officinalis, Melaleuca alternifolia, Pelargonium graveolens and Verbena officinalis)). Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 10573 KiB  
Article
Essential Oil of Bursera morelensis Promotes Cell Migration on Fibroblasts: In Vitro Assays
by Judith Salas-Oropeza, Marco Aurelio Rodriguez-Monroy, Manuel Jimenez-Estrada, Armando Perez-Torres, Andres Eliu Castell-Rodriguez, Rodolfo Becerril-Millan, Katia Jarquin-Yanez and Maria Margarita Canales-Martinez
Molecules 2023, 28(17), 6258; https://doi.org/10.3390/molecules28176258 - 26 Aug 2023
Cited by 3 | Viewed by 2866
Abstract
Essential oils (EOs) are complex mixtures of volatile natural compounds. We have extensively studied the EO of Bursera morelensis, which demonstrates antibacterial, antifungal, anti-inflammatory, and wound-healing activities. The objective of this work was to determine the effect of this EO on fibroblast [...] Read more.
Essential oils (EOs) are complex mixtures of volatile natural compounds. We have extensively studied the EO of Bursera morelensis, which demonstrates antibacterial, antifungal, anti-inflammatory, and wound-healing activities. The objective of this work was to determine the effect of this EO on fibroblast migration in a three-dimensional in vitro model. For the three-dimensional in vitro model, a series of fibrin hydrogel scaffolds (FSs) were built in which fibroblasts were cultured and subsequently stimulated with fibroblast growth factor (FGF) or EO. The results demonstrated that these FSs are appropriate for fibroblast culture, since no decrease in cell viability or changes in cell proliferation were found. The results also showed that this EO promotes cell migration four hours after stimulation, and the formation of cell projections (filopodia) outside the SF was observed. From these results, we confirmed that part of the mechanism of action of the essential oil of B. morelensis during the healing process is the stimulation of fibroblast migration to the wound site. Full article
Show Figures

Figure 1

12 pages, 2993 KiB  
Article
Effect of the Essential Oils of Bursera morelensis and Lippia graveolens and Five Pure Compounds on the Mycelium, Spore Production, and Germination of Species of Fusarium
by Yoli Mariana Medina-Romero, Mario Rodriguez-Canales, Marco Aurelio Rodriguez-Monroy, Ana Bertha Hernandez-Hernandez, Norma Laura Delgado-Buenrostro, Yolanda I. Chirino, Tonatiuh Cruz-Sanchez, Carlos Gerardo Garcia-Tovar and Maria Margarita Canales-Martinez
J. Fungi 2022, 8(6), 617; https://doi.org/10.3390/jof8060617 - 9 Jun 2022
Cited by 10 | Viewed by 2661
Abstract
The genus Fusarium causes many diseases in economically important plants. Synthetic agents are used to control postharvest diseases caused by Fusarium, but the use of these synthetic agents generates several problems, making it necessary to develop new alternative pesticides. Essential oils can [...] Read more.
The genus Fusarium causes many diseases in economically important plants. Synthetic agents are used to control postharvest diseases caused by Fusarium, but the use of these synthetic agents generates several problems, making it necessary to develop new alternative pesticides. Essential oils can be used as a new control strategy. The essential oils of Bursera morelensis and Lippia graveolens have been shown to have potent antifungal activity against Fusarium. However, for the adequate management of diseases, as well as the optimization of the use of essential oils, it is necessary to know how essential oils act on the growth and reproduction of the fungus. In this study, the target of action of the essential oils of B. morelensis and L. graveolens and of the pure compounds present in the essential oils (carvacrol, p-cymene, α-phellandrene, α-pinene, and Υ-terpinene) was determined by evaluating the effect on hyphal morphology, as well as on spore production and germination of three Fusarium species. In this work, carvacrol was found to be the compound that produced the highest inhibition of radial growth. Essential oils and pure compounds caused significant damage to hyphal morphology and affected spore production and germination of Fusarium species. Full article
Show Figures

Figure 1

14 pages, 4870 KiB  
Article
Wound Healing Activity of α-Pinene and α-Phellandrene
by Judith Salas-Oropeza, Manuel Jimenez-Estrada, Armando Perez-Torres, Andres Eliu Castell-Rodriguez, Rodolfo Becerril-Millan, Marco Aurelio Rodriguez-Monroy, Katia Jarquin-Yañez and Maria Margarita Canales-Martinez
Molecules 2021, 26(9), 2488; https://doi.org/10.3390/molecules26092488 - 24 Apr 2021
Cited by 60 | Viewed by 4885
Abstract
Bursera morelensis is used in Mexican folk medicine to treat wounds on the skin. Recently, it was shown that the essential oil (EO) of B. morelensis has wound healing activity, accelerating cutaneous wound closure and generating scars with good tensile strength. α-pinene (PIN) [...] Read more.
Bursera morelensis is used in Mexican folk medicine to treat wounds on the skin. Recently, it was shown that the essential oil (EO) of B. morelensis has wound healing activity, accelerating cutaneous wound closure and generating scars with good tensile strength. α-pinene (PIN) and α-phellandrene (FEL) are terpenes that have been found in this EO, and it has been shown in different studies that both have anti-inflammatory activity. The aim of this study was to determine the wound healing activity of these two terpenes. The results of in vitro tests demonstrate that PIN and FEL are not cytotoxic at low concentrations and that they do not stimulate fibroblast cell proliferation. In vivo tests showed that the terpenes produce stress-resistant scars and accelerate wound contraction, due to collagen deposition from the early stages, in wounds treated with both terpenes. Therefore, we conclude that both α-pinene and α-phellandrene promote the healing process; this confirms the healing activity of the EO of B. morelensis, since having these terpenes as part of its chemical composition explains part of its demonstrated activity. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

16 pages, 10713 KiB  
Article
Wound Healing Activity of the Essential Oil of Bursera morelensis, in Mice
by Judith Salas-Oropeza, Manuel Jimenez-Estrada, Armando Perez-Torres, Andres Eliu Castell-Rodriguez, Rodolfo Becerril-Millan, Marco Aurelio Rodriguez-Monroy and Maria Margarita Canales-Martinez
Molecules 2020, 25(8), 1795; https://doi.org/10.3390/molecules25081795 - 14 Apr 2020
Cited by 30 | Viewed by 5572
Abstract
Bursera morelensis is used in Mexican folk medicine to treat wounds on the skin. It is an endemic tree known as “aceitillo”, and the antibacterial and antifungal activity of its essential oil has been verified; it also acts as an anti-inflammatory. All of [...] Read more.
Bursera morelensis is used in Mexican folk medicine to treat wounds on the skin. It is an endemic tree known as “aceitillo”, and the antibacterial and antifungal activity of its essential oil has been verified; it also acts as an anti-inflammatory. All of these reported biological activities make the essential oil of B. morelensis a candidate to accelerate the wound-healing process. The objective was to determine the wound-healing properties of B. morelensis’ essential oil on a murine model. The essential oil was obtained by hydro-distillation, and the chemical analysis was performed by gas chromatography-mass spectrometry (GC-MS). In the murine model, wound-healing efficacy (WHE) and wound contraction (WC) were evaluated. Cytotoxic activity was evaluated in vitro using peritoneal macrophages from BALB/c mice. The results showed that 18 terpenoid-type compounds were identified in the essential oil. The essential oil had remarkable WHE regardless of the dose and accelerated WC and was not cytotoxic. In vitro tests with fibroblasts showed that cell viability was dose-dependent; by adding 1 mg/mL of essential oil (EO) to the culture medium, cell viability decreased below 80%, while, at doses of 0.1 and 0.01 mg/mL, it remained around 90%; thus, EO did not intervene in fibroblast proliferation, but it did influence fibroblast migration when wound-like was done in monolayer cultures. The results of this study demonstrated that the essential oil was a pro-wound-healing agent because it had good healing effectiveness with scars with good tensile strength and accelerated repair. The probable mechanism of action of the EO of B. morelensis, during the healing process, is the promotion of the migration of fibroblasts to the site of the wound, making them active in the production of collagen and promoting the remodeling of this collagen. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

13 pages, 2403 KiB  
Article
Anti-Candida Activity of Bursera morelensis Ramirez Essential Oil and Two Compounds, α-Pinene and γ-Terpinene—An In Vitro Study
by C. Rebeca Rivera-Yañez, L. Ignacio Terrazas, Manuel Jimenez-Estrada, Jorge E. Campos, Cesar M. Flores-Ortiz, Luis B. Hernandez, Tonatiuh Cruz-Sanchez, German I. Garrido-Fariña, Marco A. Rodriguez-Monroy and M. Margarita Canales-Martinez
Molecules 2017, 22(12), 2095; https://doi.org/10.3390/molecules22122095 - 5 Dec 2017
Cited by 44 | Viewed by 6525
Abstract
The candidiasis caused by C. albicans is a public health problem. The abuse of antifungals has contributed to the development of resistance. B. morelensis has demonstrated antibacterial and antifungal activities. In this work the activity of the essential oil of B. morelensis was [...] Read more.
The candidiasis caused by C. albicans is a public health problem. The abuse of antifungals has contributed to the development of resistance. B. morelensis has demonstrated antibacterial and antifungal activities. In this work the activity of the essential oil of B. morelensis was evaluated and for its two pure compounds with analysis of the different mechanisms of pathogenesis important for C. albicans. The essential oil was obtained by the hydro-distillation method and analyzed using GC–MS. The anti-Candida activity was compared between to essential oil, α-Pinene and γ-Terpinene. GC–MS of the essential oil demonstrated the presence of 13 compounds. The essential oil showed antifungal activity against four C. albicans strains. The most sensitive strain was C. albicans 14065 (MFC 2.0 mg/mL and MIC50 0.125 mg/mL) with α-Pinene and γ-Terpinene having MFCs of 4.0 and 16.0 mg/mL respectively. The essential oil inhibited the growth of the germ tube in 87.94% (8.0 mg/mL). Furthermore, it was observed that the essential oil diminishes the transcription of the gene INT1. This work provides evidence that confirms the anti-Candida activity of the B. morelensis essential oil and its effect on the growth of the germ tube and transcription of the gene INT1. Full article
(This article belongs to the Special Issue Essential Oils as Antimicrobial and Anti-infectious Agents)
Show Figures

Graphical abstract

Back to TopTop