Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = Bucky paper

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1950 KiB  
Communication
Creation of Flexible Heterogeneously-Doped Carbon Nanotube Paper PN Diodes to Enhance Thermoelectric and Photovoltaic Effects
by Jih-Hsin Liu and Chen-Yu Yen
Processes 2024, 12(12), 2898; https://doi.org/10.3390/pr12122898 - 18 Dec 2024
Cited by 1 | Viewed by 792
Abstract
This study investigates the fabrication and characterization of flexible PN diode devices using phosphorus- and boron-doped carbon nanotube (CNT) paper, also known as Buckypaper (BP). The BP substrate is fabricated from multi-walled carbon nanotubes (MWCNTs) and doped with phosphorus and boron to form [...] Read more.
This study investigates the fabrication and characterization of flexible PN diode devices using phosphorus- and boron-doped carbon nanotube (CNT) paper, also known as Buckypaper (BP). The BP substrate is fabricated from multi-walled carbon nanotubes (MWCNTs) and doped with phosphorus and boron to form N-type and P-type semiconductors, respectively. Various experimental techniques, including Raman spectroscopy, Hall effect measurements, and scanning electron microscopy (SEM), are employed to analyze the properties of the doped BP. The results reveal that the current-voltage (I-V) and capacitance-voltage (C-V) characteristics preliminarily exhibit the basic electrical properties of a diode after doping with P-type and N-type carriers. Subsequently, optimized vertical stacking combined with parallel electrode configurations for the BP diode devices demonstrates that vertical series stacking gradually enhances the thermoelectric voltage, while horizontal parallel connections approximately scale up the thermoelectric and photovoltaic voltages proportionally. The findings underscore the critical role of creating heterogeneously doped CNT-paper PN junction electric fields in improving the performance of carbon-based semiconductor devices. Furthermore, we demonstrate that these directionally oriented energy devices, when stacked, can form modular systems with enhanced efficiency. This work highlights the potential of flexible carbon material-based devices for advanced thermoelectric and photovoltaic applications. Full article
Show Figures

Figure 1

14 pages, 5060 KiB  
Article
Heat-Annealed Zinc Oxide on Flexible Carbon Nanotube Paper and Exposed to Gradient Light to Enhance Its Photoelectric Response
by Jih-Hsin Liu and Pi-Yu Shen
Nanomaterials 2024, 14(9), 792; https://doi.org/10.3390/nano14090792 - 2 May 2024
Cited by 6 | Viewed by 1946
Abstract
Buckypaper (BP), a flexible and porous material, exhibits photovoltaic properties when exposed to light. In this study, we employed radio frequency (RF) sputtering of zinc oxide (ZnO) followed by rapid thermal annealing to enhance the photovoltaic response of BP. We investigated the impact [...] Read more.
Buckypaper (BP), a flexible and porous material, exhibits photovoltaic properties when exposed to light. In this study, we employed radio frequency (RF) sputtering of zinc oxide (ZnO) followed by rapid thermal annealing to enhance the photovoltaic response of BP. We investigated the impact of various sputtering parameters, such as the gas flow ratio of argon to oxygen and deposition time, on the morphology, composition, resistivity, and photovoltaic characteristics of ZnO-modified BP. Additionally, the photovoltaic performance of the samples under different illumination modes and wavelengths was compared. It was found that optimal sputtering conditions—argon to oxygen flow ratio of 1:2, deposition time of 20 min, and power of 100 watts—resulted in a ZnO film thickness of approximately 45 nanometers. After annealing at 400 °C for 10 min, the ZnO-modified BP demonstrated a significant increase in photocurrent and photovoltage, along with a reduction in resistivity, compared to unmodified BP. Moreover, under gradient illumination, the ZnO-modified BP exhibited a photovoltage enhancement of 14.70-fold and a photocurrent increase of 13.86-fold, compared to uniform illumination. Under blue light, it showed a higher photovoltaic response than under other colors. The enhancement in photovoltaic response is attributed to the formation of a Schottky junction between ZnO and BP, an increased carrier concentration gradient, and an expanded light absorption spectrum. Our results validate that ZnO sputtering followed by annealing is an effective method for modifying BP for photovoltaic applications such as solar cells and photodetectors. Full article
(This article belongs to the Special Issue Growth, Characterization and Applications of Nanotubes (2nd Edition))
Show Figures

Figure 1

14 pages, 2066 KiB  
Article
Hybrid Platforms of Silicon Nanowires and Carbon Nanotubes in an Ionic Liquid Bucky Gel
by Maria José Lo Faro, Antonio Alessio Leonardi, Dario Morganti, Sabrina Conoci, Barbara Fazio and Alessia Irrera
Molecules 2022, 27(14), 4412; https://doi.org/10.3390/molecules27144412 - 9 Jul 2022
Cited by 3 | Viewed by 2455
Abstract
Silicon nanowires (NWs) are appealing building blocks for low-cost novel concept devices with improved performances. In this research paper, we realized a hybrid platform combining an array of vertically oriented Si NWs with different types of bucky gels, obtained from carbon nanotubes (CNT) [...] Read more.
Silicon nanowires (NWs) are appealing building blocks for low-cost novel concept devices with improved performances. In this research paper, we realized a hybrid platform combining an array of vertically oriented Si NWs with different types of bucky gels, obtained from carbon nanotubes (CNT) dispersed into an ionic liquid (IL) matrix. Three types of CNT bucky gels were obtained from imidazolium-based ionic liquids (BMIM-I, BIMI-BF4, and BMIM-Tf2N) and semiconductive CNTs, whose structural and optical responses to the hybrid platforms were analyzed and compared. We investigated the electrical response of the IL-CNT/NW hybrid junctions in dark and under illumination for each platform and its correlation to the ionic liquid characteristics and charge mobility. The reported results confirm the attractiveness of such IL-CNT/NW hybrid platforms as novel light-responsive materials for photovoltaic applications. In particular, our best performing cell reported a short-circuit current density of 5.6 mA/cm2 and an open-circuit voltage of 0.53 V. Full article
Show Figures

Figure 1

17 pages, 3004 KiB  
Article
On the Use of Carbon Cables from Plastic Solvent Combinations of Polystyrene and Toluene in Carbon Nanotube Synthesis
by Alvin Orbaek White, Ali Hedayati, Tim Yick, Varun Shenoy Gangoli, Yubiao Niu, Sean Lethbridge, Ioannis Tsampanakis, Gemma Swan, Léo Pointeaux, Abigail Crane, Rhys Charles, Jainaba Sallah-Conteh, Andrew O. Anderson, Matthew Lloyd Davies, Stuart. J. Corr and Richard E. Palmer
Nanomaterials 2022, 12(1), 9; https://doi.org/10.3390/nano12010009 - 21 Dec 2021
Cited by 13 | Viewed by 6190
Abstract
For every three people on the planet, there are approximately two Tonnes (Te) of plastic waste. We show that carbon recovery from polystyrene (PS) plastic is enhanced by the coaddition of solvents to grow carbon nanotubes (CNTs) by liquid injection chemical vapour deposition. [...] Read more.
For every three people on the planet, there are approximately two Tonnes (Te) of plastic waste. We show that carbon recovery from polystyrene (PS) plastic is enhanced by the coaddition of solvents to grow carbon nanotubes (CNTs) by liquid injection chemical vapour deposition. Polystyrene was loaded up to 4 wt% in toluene and heated to 780 °C in the presence of a ferrocene catalyst and a hydrogen/argon carrier gas at a 1:19 ratio. High resolution transmission electron microscopy (HRTEM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Raman spectroscopy were used to identify multiwalled carbon nanotubes (MWCNTs). The PS addition in the range from 0 to 4 wt% showed improved quality and CNT homogeneity; Raman “Graphitic/Defective” (G/D) values increased from 1.9 to 2.3; mean CNT diameters increased from 43.0 to 49.2 nm; and maximum CNT yield increased from 11.37% to 14.31%. Since both the CNT diameters and the percentage yield increased following the addition of polystyrene, we conclude that carbon from PS contributes to the carbon within the MWCNTs. The electrical contact resistance of acid-washed Bucky papers produced from each loading ranged from 2.2 to 4.4 Ohm, with no direct correlation to PS loading. Due to this narrow range, materials with different loadings were mixed to create the six wires of an Ethernet cable and tested using iPerf3; the cable achieved up- and down- link speeds of ~99.5 Mbps, i.e., comparable to Cu wire with the same dimensions (~99.5 Mbps). The lifecycle assessment (LCA) of CNT wire production was compared to copper wire production for a use case in a Boeing 747-400 over the lifespan of the aircraft. Due to their lightweight nature, the CNT wires decreased the CO2 footprint by 21 kTonnes (kTe) over the aircraft’s lifespan. Full article
(This article belongs to the Special Issue Multifunctional Nanomaterials for Energy Applications)
Show Figures

Graphical abstract

12 pages, 5001 KiB  
Article
Development of Paper Actuators Based on Carbon-Nanotube-Composite Paper
by Takahiro Ampo and Takahide Oya
Molecules 2021, 26(5), 1463; https://doi.org/10.3390/molecules26051463 - 8 Mar 2021
Cited by 9 | Viewed by 2798
Abstract
We propose a unique soft actuator—a paper actuator—based on carbon-nanotube-composite paper (CNT-composite paper), which is a composite of carbon nanotubes (CNTs) and paper. CNT-composite paper has highly efficient properties because of the contained CNTs, such as high electrical conductivity and semiconducting properties. We [...] Read more.
We propose a unique soft actuator—a paper actuator—based on carbon-nanotube-composite paper (CNT-composite paper), which is a composite of carbon nanotubes (CNTs) and paper. CNT-composite paper has highly efficient properties because of the contained CNTs, such as high electrical conductivity and semiconducting properties. We are considering using CNT-composite paper for various devices. In this study, we successfully developed a paper actuator. We determined the structure of the paper actuator by referencing that of bucky-gel actuators. The actuator operates using the force generated by the movement of ions. In addition to making the paper actuator, we also attempted to improve its performance, using pressure as an index and an electronic scale to measure the pressure. We investigated the optimal dispersant for use in paper actuators, expecting the residual dispersant on the CNT-composite paper to affect the performance differently depending on the type of dispersant. Referring to research on bucky-gel actuators, we also found that the addition of carbon powder to the electrode layers is effective in improving the pressure for paper actuators. We believe that the paper actuator could be used in various situations due to its ease of processing. Full article
(This article belongs to the Special Issue Fullerenes, Graphenes and Carbon Nanotubes Nanocomposites)
Show Figures

Figure 1

13 pages, 4171 KiB  
Article
Preparation of Hybrid Polyaniline/Nanoparticle Membranes for Water Treatment Using an Inverse Emulsion Polymerization Technique under Sonication
by Itamar Chajanovsky and Ran Y. Suckeveriene
Processes 2020, 8(11), 1503; https://doi.org/10.3390/pr8111503 - 20 Nov 2020
Cited by 7 | Viewed by 2969
Abstract
This manuscript describes a novel in situ interfacial dynamic inverse emulsion polymerization process under sonication of aniline in the presence of carbon nanotubes (CNT) and graphene nanoparticles in ethanol. This polymerization method is simple and very rapid (up to 10 min) compared to [...] Read more.
This manuscript describes a novel in situ interfacial dynamic inverse emulsion polymerization process under sonication of aniline in the presence of carbon nanotubes (CNT) and graphene nanoparticles in ethanol. This polymerization method is simple and very rapid (up to 10 min) compared to other techniques reported in the literature. During polymerization, the nanoparticles are coated with polyaniline (PANI), forming a core-shell structure, as confirmed by high-resolution scanning electron microscopy (HRSEM) and Fourier-Transform Infrared (FTIR) measurements. The membrane pore sizes range between 100–200 nm, with an average value of ~119 ± 28.3 nm. The film resistivity decreased when treated with alcohol, and this behavior was used for selection of the most efficient alcohol as a solvent for this polymerization technique. The membrane permeability of the PANI grafted CNT was lower than the CNT reference, thus demonstrating better membranal properties. As measured by water permeability, these are ultrafiltration membranes. An antimicrobial activity test showed that whereas the reference nanoparticle Bucky paper developed a large bacterial colony, the PANI grafted CNT sample had no bacterial activity. The thicker, 2.56 mm membranes exhibited high salt removal properties at a low pressure drop. Such active membranes comprise a novel approach for future water treatment applications. Full article
(This article belongs to the Special Issue Polymerization Technologies in the Presence of Nanoparticles)
Show Figures

Figure 1

18 pages, 7928 KiB  
Article
Mechanical and Electrical Characterization of Carbon Fiber/Bucky Paper/Zinc Oxide Hybrid Composites
by Suma Ayyagari, Marwan Al-Haik and Virginie Rollin
C 2018, 4(1), 6; https://doi.org/10.3390/c4010006 - 18 Jan 2018
Cited by 14 | Viewed by 6435
Abstract
The quest for multifunctional carbon fiber reinforced composites (CFRPs) expedited the use of several nano reinforcements such as zinc oxide nanorods (ZnO) and carbon nanotubes (CNTs). Zinc oxide is a semi-conductor with good piezoelectric and pyroelectric properties. These properties could be transmitted to [...] Read more.
The quest for multifunctional carbon fiber reinforced composites (CFRPs) expedited the use of several nano reinforcements such as zinc oxide nanorods (ZnO) and carbon nanotubes (CNTs). Zinc oxide is a semi-conductor with good piezoelectric and pyroelectric properties. These properties could be transmitted to CFRPs when a nanophase of ZnO is embedded within CFRPs. In lieu of ZnO nanorods, Bucky paper comprising mat of CNTs could be sandwiched in-between composite laminae to construct a functionally graded composite with enhanced electrical conductivities. In this study, different configurations of hybrid composites based on carbon fibers with different combinations of ZnO nanorods and Bucky paper were fabricated. The composites were tested mechanically via tensile and dynamic mechanical analysis (DMA) tests to examine the effect of the different nanoadditives on the stiffness, strength and the damping performance of the hybrid composites. Electrical resistivities of the hybrid composites were probed to examine the contributions of the different nanoadditives. The results suggest that there are certain hybrid composite combinations that could lead to the development of highly multifunctional composites with better strength, stiffness, damping and electrical conductivity. Full article
(This article belongs to the Special Issue Carbon Hybrid Materials)
Show Figures

Graphical abstract

10 pages, 2435 KiB  
Communication
Insights into Surface Interactions between Metal Organic Frameworks and Gases during Transient Adsorption and Diffusion by In-Situ Small Angle X-ray Scattering
by Ludovic F. Dumée, Li He, Peter Hodgson and Lingxue Kong
Membranes 2016, 6(3), 41; https://doi.org/10.3390/membranes6030041 - 3 Sep 2016
Cited by 5 | Viewed by 6251
Abstract
The fabrication of molecular gas sieving materials with specific affinities for a single gas species and able to store large quantities of materials at a low or atmospheric pressure is desperately required to reduce the adverse effects of coal and oil usage in [...] Read more.
The fabrication of molecular gas sieving materials with specific affinities for a single gas species and able to store large quantities of materials at a low or atmospheric pressure is desperately required to reduce the adverse effects of coal and oil usage in carbon capture. Fundamental understanding of the dynamic adsorption of gas, the diffusion mechanisms across thin film membranes, and the impact of interfaces play a vital role in developing these materials. In this work, single gas permeation tests across micro-porous membrane materials, based on metal organic framework crystals grown on the surface of carbon nanotubes (ZiF-8@CNT), were performed for the first time in-situ at the Australian Synchrotron on the small angle X-ray scattering beamline in order to reveal molecular sieving mechanisms and gas adsorption within the material. The results show that specific chemi-sorption of CO2 across the ZiF-8 crystal lattices affected the morphology and unit cell parameters, while the sieving of other noble or noble like gases across the ZiF-8@CNT membranes was found to largely follow Knudsen diffusion. This work demonstrates for the first time a novel and effective technique to assess molecular diffusion at the nano-scale across sub-nano-porous materials by probing molecular flexibility across crystal lattice and single cell units. Full article
(This article belongs to the Section Membrane Surfaces and Interfaces)
Show Figures

Figure 1

15 pages, 1082 KiB  
Communication
Selectivity of Chemoresistive Sensors Made of Chemically Functionalized Carbon Nanotube Random Networks for Volatile Organic Compounds (VOC)
by Jean-François Feller, Nicolas Gatt, Bijandra Kumar and Mickaël Castro
Chemosensors 2014, 2(1), 26-40; https://doi.org/10.3390/chemosensors2010026 - 15 Jan 2014
Cited by 32 | Viewed by 10250
Abstract
Different grades of chemically functionalized carbon nanotubes (CNT) have been processed by spraying layer-by-layer (sLbL) to obtain an array of chemoresistive transducers for volatile organic compound (VOC) detection. The sLbL process led to random networks of CNT less conductive, but more sensitive to [...] Read more.
Different grades of chemically functionalized carbon nanotubes (CNT) have been processed by spraying layer-by-layer (sLbL) to obtain an array of chemoresistive transducers for volatile organic compound (VOC) detection. The sLbL process led to random networks of CNT less conductive, but more sensitive to vapors than filtration under vacuum (bucky papers). Shorter CNT were also found to be more sensitive due to the less entangled and more easily disconnectable conducting networks they are making. Chemical functionalization of the CNT’ surface is changing their selectivity towards VOC, which makes it possible to easily discriminate methanol, chloroform and tetrahydrofuran (THF) from toluene vapors after the assembly of CNT transducers into an array to make an e-nose. Interestingly, the amplitude of the CNT transducers’ responses can be enhanced by a factor of five (methanol) to 100 (chloroform) by dispersing them into a polymer matrix, such as poly(styrene) (PS), poly(carbonate) (PC) or poly(methyl methacrylate) (PMMA). COOH functionalization of CNT was found to penalize their dispersion in polymers and to decrease the sensors’ sensitivity. The resulting conductive polymer nanocomposites (CPCs) not only allow for a more easy tuning of the sensors’ selectivity by changing the chemical nature of the matrix, but they also allow them to adjust their sensitivity by changing the average gap between CNT (acting on quantum tunneling in the CNT network). Quantum resistive sensors (QRSs) appear promising for environmental monitoring and anticipated disease diagnostics that are both based on VOC analysis. Full article
(This article belongs to the Special Issue Nanosensors)
Show Figures

Figure 1

9 pages, 727 KiB  
Article
A Preliminary Study on the Effect of Macro Cavities Formation on Properties of Carbon Nanotube Bucky-Paper Composites
by Ludovic Dumée, Kallista Sears, Jürg Schütz, Niall Finn, Mikel Duke and Stephen Gray
Materials 2011, 4(3), 553-561; https://doi.org/10.3390/ma4030553 - 10 Mar 2011
Cited by 15 | Viewed by 9079
Abstract
In this study, we focus on processing and characterizing composite material structures made of carbon nanotubes (CNTs) and reproducibly engineering macro-pores inside their structure. Highly porous bucky-papers were fabricated from pure carbon nanotubes by dispersing and stabilizing large 1 μm polystyrene beads within [...] Read more.
In this study, we focus on processing and characterizing composite material structures made of carbon nanotubes (CNTs) and reproducibly engineering macro-pores inside their structure. Highly porous bucky-papers were fabricated from pure carbon nanotubes by dispersing and stabilizing large 1 μm polystyrene beads within a carbon nanotube suspension. The polystyrene beads, homogeneously dispersed across the thickness of the bucky-papers, were then either dissolved or carbonized to generate macro cavities of different shape and properties. The impact of adding these macro cavities on the porosity, specific surface area and Young’s modulus was investigated and some benefits of the macro cavities will be demonstrated. Full article
(This article belongs to the Special Issue Porous Materials 2011)
Show Figures

Figure 1

12 pages, 1092 KiB  
Article
Control of Porosity and Pore Size of Metal Reinforced Carbon Nanotube Membranes
by Ludovic Dumee, Leonora Velleman, Kallista Sears, Matthew Hill, Jurg Schutz, Niall Finn, Mikel Duke and Stephen Gray
Membranes 2011, 1(1), 25-36; https://doi.org/10.3390/membranes1010025 - 21 Dec 2010
Cited by 44 | Viewed by 10478
Abstract
Membranes are crucial in modern industry and both new technologies and materials need to be designed to achieve higher selectivity and performance. Exotic materials such as nanoparticles offer promising perspectives, and combining both their very high specific surface area and the possibility to [...] Read more.
Membranes are crucial in modern industry and both new technologies and materials need to be designed to achieve higher selectivity and performance. Exotic materials such as nanoparticles offer promising perspectives, and combining both their very high specific surface area and the possibility to incorporate them into macrostructures have already shown to substantially increase the membrane performance. In this paper we report on the fabrication and engineering of metal-reinforced carbon nanotube (CNT) Bucky-Paper (BP) composites with tuneable porosity and surface pore size. A BP is an entangled mesh non-woven like structure of nanotubes. Pure CNT BPs present both very high porosity (>90%) and specific surface area (>400 m2/g). Furthermore, their pore size is generally between 20–50 nm making them promising candidates for various membrane and separation applications. Both electro-plating and electroless plating techniques were used to plate different series of BPs and offered various degrees of success. Here we will report mainly on electroless plated gold/CNT composites. The benefit of this method resides in the versatility of the plating and the opportunity to tune both average pore size and porosity of the structure with a high degree of reproducibility. The CNT BPs were first oxidized by short UV/O3 treatment, followed by successive immersion in different plating solutions. The morphology and properties of these samples has been investigated and their performance in air permeation and gas adsorption will be reported. Full article
(This article belongs to the Special Issue Selected Papers from the AMS6/IMSTEC10 Conference)
Show Figures

23 pages, 2881 KiB  
Review
Recent Developments in Carbon Nanotube Membranes for Water Purification and Gas Separation
by Kallista Sears, Ludovic Dumée, Jürg Schütz, Mary She, Chi Huynh, Stephen Hawkins, Mikel Duke and Stephen Gray
Materials 2010, 3(1), 127-149; https://doi.org/10.3390/ma3010127 - 4 Jan 2010
Cited by 253 | Viewed by 28210
Abstract
Carbon nanotubes (CNTs) are nanoscale cylinders of graphene with exceptional properties such as high mechanical strength, high aspect ratio and large specific surface area. To exploit these properties for membranes, macroscopic structures need to be designed with controlled porosity and pore size. This [...] Read more.
Carbon nanotubes (CNTs) are nanoscale cylinders of graphene with exceptional properties such as high mechanical strength, high aspect ratio and large specific surface area. To exploit these properties for membranes, macroscopic structures need to be designed with controlled porosity and pore size. This manuscript reviews recent progress on two such structures: (i) CNT Bucky-papers, a non-woven, paper like structure of randomly entangled CNTs, and (ii) isoporous CNT membranes, where the hollow CNT interior acts as a membrane pore. The construction of these two types of membranes will be discussed, characterization and permeance results compared, and some promising applications presented. Full article
(This article belongs to the Special Issue Porous Materials)
Show Figures

Graphical abstract

Back to TopTop