Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Benzyne intermediate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1719 KiB  
Article
Jejucarbosides B–E, Chlorinated Cycloaromatized Enediynes, from a Marine Streptomyces sp.
by Ji Hyeon Im, Yern-Hyerk Shin, Eun Seo Bae, Sang Kook Lee and Dong-Chan Oh
Mar. Drugs 2023, 21(7), 405; https://doi.org/10.3390/md21070405 - 18 Jul 2023
Cited by 6 | Viewed by 2363
Abstract
Four new chlorinated cycloaromatized enediyne compounds, jejucarbosides B–E (14), were discovered together with previously-identified jejucarboside A from a marine actinomycete strain. Compounds 14 were identified as new chlorinated cyclopenta[a]indene glycosides based on 1D and 2D [...] Read more.
Four new chlorinated cycloaromatized enediyne compounds, jejucarbosides B–E (14), were discovered together with previously-identified jejucarboside A from a marine actinomycete strain. Compounds 14 were identified as new chlorinated cyclopenta[a]indene glycosides based on 1D and 2D nuclear magnetic resonance, high-resolution mass spectrometry, and circular dichroism (CD) spectra. Jejucarbosides B and E bear a carbonate functional group whereas jejucarbosides C and D are variants possessing 1,2-diol by losing the carbonate functionality. It is proposed that the production of 14 occurs via Bergman cycloaromatization capturing Cl- and H+ in the alternative positions of a p-benzyne intermediate derived from a 9-membered enediyne core. Jejucarboside E (4) displayed significant cytotoxicity against human cancer cell lines including SNU-638, SK-HEP-1, A549, HCT116, and MDA-MB-231, with IC50 values of 0.31, 0.40, 0.25, 0.29, and 0.48 μM, respectively, while jejucarbosides B–D (13) showed moderate or no cytotoxic effects. Full article
(This article belongs to the Special Issue Marine Drug Research in Korea II)
Show Figures

Graphical abstract

27 pages, 14624 KiB  
Review
The Effect of Benzannulation on the Structures, Reactivity and Molecular Dynamics of Indenes, Pentalenes, Azulenes and Related Molecules
by Michael J. McGlinchey
Molecules 2022, 27(12), 3882; https://doi.org/10.3390/molecules27123882 - 17 Jun 2022
Cited by 2 | Viewed by 2193
Abstract
The stabilising effect of benzannulation on isoindenes formed in the course of sigmatropic shifts of (C5H5)Fe(CO)2 or of organo-silyl groups, and on exocyclic allyl intermediates in the course of haptotropic shifts of organometallic fragments over polycyclic skeletons (fluorene, [...] Read more.
The stabilising effect of benzannulation on isoindenes formed in the course of sigmatropic shifts of (C5H5)Fe(CO)2 or of organo-silyl groups, and on exocyclic allyl intermediates in the course of haptotropic shifts of organometallic fragments over polycyclic skeletons (fluorene, cyclopenta[def]phenanthrene, syn and anti dibenzpentalenes) is exemplified. This approach led to the development of the first organometallic molecular brake. Benzyne cycloadditions to anthracenes to form triptycenes also led to unexpected or multiple adducts that were characterised by X-ray crystallography. Synthetic routes to the previously elusive benz[cd]azulene system are presented. Finally, the complete mechanism of the stepwise assembly of dispiro- and diindenyltetracenes from fluorenylallenes is presented, whereby every intermediate has been unambiguously structurally characterised. Full article
(This article belongs to the Special Issue Benzannulations in Organic Synthesis)
Show Figures

Figure 1

5 pages, 49 KiB  
Short Note
One-pot Microwave-Assisted Synthesis of 1H-Phenanthro[9,10- d][1,2,3]triazole
by Avat Arman Taherpour and Mehrak Faraji
Molbank 2008, 2008(3), M577; https://doi.org/10.3390/M577 - 4 Sep 2008
Cited by 5 | Viewed by 5123
Abstract
In this study, a fast and good yield one-pot microwave-assisted synthesis (45 seconds) of 1H-phenanthro[9,10-d][1,2,3]triazole by a 1,3-dipolar cycloaddition reaction of sodium azide and 9-bromophenanthrene in the presence of potassium tert-butoxide in DMSO as solvent is reported. Full article
Back to TopTop