Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Bama mini-pigs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4732 KB  
Article
Dietary Betaine Supplementation Enhances Colonic Barrier Function through the Nrf2/Keap1 and TLR4-NF-κB/MAPK Signaling Pathways and Alters Colonic Microbiota in Bama Mini-Pigs
by Liang Xiong, Kai Wang, Mingtong Song, Md. Abul Kalam Azad, Qian Zhu and Xiangfeng Kong
Antioxidants 2023, 12(11), 1926; https://doi.org/10.3390/antiox12111926 - 29 Oct 2023
Cited by 9 | Viewed by 2584
Abstract
This study evaluated the effects of betaine supplementation in sows and/or their offspring’s diets on the redox status, immune and inflammatory levels, colonic barrier function, and colonic microbial community of offspring piglets. Thirty-six Bama mini-sows on day 3 of gestation and their weaned [...] Read more.
This study evaluated the effects of betaine supplementation in sows and/or their offspring’s diets on the redox status, immune and inflammatory levels, colonic barrier function, and colonic microbial community of offspring piglets. Thirty-six Bama mini-sows on day 3 of gestation and their weaned offspring piglets (28 d of age) were randomly allocated to the following treatments: (1) sows and their weaned offspring fed the basal diet (control group, Con group); (2) sows fed the basal diet with 3.50 kg/t betaine, and their weaned offspring fed the basal diet (sows betaine group, SB group); (3) sows fed the basal diet with 3.50 kg/t betaine, and their weaned offspring fed the basal diet with 2.50 kg/t betaine (sow-offspring betaine group, S-OB group). Six offspring piglets from each group were selected to collect plasma and colon samples on d 30, 60, and 90 after weaning. Compared with the Con group, the plasma levels of IgA, IgM, GSH-Px, and SOD during d 30–90 after weaning, IFN-α, T-AOC, and GSH on d 30 and 60 after weaning were increased, while MDA during d 30–90 after weaning was decreased in the SB and S-OB groups (p < 0.05). In addition, the plasma levels of IFN-γ on d 60 and T-AOC on d 30 after weaning were higher in the S-OB group than those in the Con group (p < 0.05). In the colon, betaine supplementation increased plasma T-AOC, GSH, and SOD levels while decreasing MDA concentration (p < 0.05). Betaine supplementation improved the colonic protein abundances of ZO-1, occludin, and claudin in offspring and activated the Nrf2/Keap1 signaling pathway while inhibiting the TLR4-NF-κB/MAPK signaling pathway on d 90 after weaning. The 16S rRNA sequencing results showed that betaine supplementation altered colonic microbiota composition by increasing the relative abundances of Verrucomicrobia and Actinobacteria in the SB group while decreasing proinflammatory-associated microbiota abundances (Tenericutes, Prevotella, and Parabacteroides) (p < 0.05). Collectively, these findings suggest that dietary betaine supplementation in sows and/or their offspring could improve offspring piglets’ redox status and immune and anti-inflammatory levels and enhance the colonic barrier function by activating Nrf2/Keap1 and inhibiting TLR4-NF-κB/MAPK signaling pathways. Full article
(This article belongs to the Section Health Outcomes of Antioxidants and Oxidative Stress)
Show Figures

Figure 1

25 pages, 1560 KB  
Article
Sow-Offspring Diets Supplemented with Probiotics and Synbiotics Are Associated with Offspring’s Growth Performance and Meat Quality
by Qian Zhu, Md. Abul Kalam Azad, Haibo Dong, Chenjian Li, Ruixuan Li, Yating Cheng, Yang Liu, Yulong Yin and Xiangfeng Kong
Int. J. Mol. Sci. 2023, 24(8), 7668; https://doi.org/10.3390/ijms24087668 - 21 Apr 2023
Cited by 10 | Viewed by 3930
Abstract
Probiotics and synbiotics supplementation have been shown to play potential roles in animal production. The present study aimed to evaluate the effects of dietary probiotics and synbiotics supplementation to sows during gestation and lactation and to offspring pigs (sow-offspring) on offspring pigs’ growth [...] Read more.
Probiotics and synbiotics supplementation have been shown to play potential roles in animal production. The present study aimed to evaluate the effects of dietary probiotics and synbiotics supplementation to sows during gestation and lactation and to offspring pigs (sow-offspring) on offspring pigs’ growth performance and meat quality. Sixty-four healthy Bama mini-pigs were selected and randomly allocated into four groups after mating: the control, antibiotics, probiotics, and synbiotics groups. After weaning, two offspring pigs per litter were selected, and four offspring pigs from two litters were merged into one pen. The offspring pigs were fed a basal diet and the same feed additive according to their corresponding sows, representing the control group (Con group), sow-offspring antibiotics group (S-OA group), sow-offspring probiotics group (S-OP group), and sow-offspring synbiotics group (S-OS group). Eight pigs per group were euthanized and sampled at 65, 95, and 125 d old for further analyses. Our findings showed that probiotics supplementation in sow-offspring diets promoted growth and feed intake of offspring pigs during 95–125 d old. Moreover, sow-offspring diets supplemented with probiotics and synbiotics altered meat quality (meat color, pH45min, pH24h, drip loss, cooking yield, and shear force), plasma UN and AMM levels, and gene expressions associated with muscle-fiber types (MyHCI, MyHCIIa, MyHCIIx, and MyHCIIb) and muscle growth and development (Myf5, Myf6, MyoD, and MyoG). This study provides a theoretical basis for the maternal-offspring integration regulation of meat quality by dietary probiotics and synbiotics supplementation. Full article
Show Figures

Graphical abstract

12 pages, 2428 KB  
Article
Identification of Potential miRNA–mRNA Regulatory Network Associated with Pig Growth Performance in the Pituitaries of Bama Minipigs and Landrace Pigs
by Yingying Jiao, Linlin Hao, Peijun Xia, Yunyun Cheng, Jie Song, Xi Chen, Zhaoguo Wang, Ze Ma, Shuo Zheng, Ting Chen, Ying Zhang and Hao Yu
Animals 2022, 12(21), 3058; https://doi.org/10.3390/ani12213058 - 7 Nov 2022
Cited by 6 | Viewed by 2610
Abstract
Pig growth performance is one of the criteria for judging pork production and is influenced by genotype and external environmental factors such as feeding conditions. The growth performance of miniature pigs, such as Bama minipigs, differs considerably from that of the larger body [...] Read more.
Pig growth performance is one of the criteria for judging pork production and is influenced by genotype and external environmental factors such as feeding conditions. The growth performance of miniature pigs, such as Bama minipigs, differs considerably from that of the larger body size pigs, such as Landrace pigs, and can be regarded as good models in pig growth studies. In this research, we identified differentially expressed genes in the pituitary gland of Bama minipigs and Landrace pigs. Through the pathway enrichment analysis, we screened the growth-related pathways and the genes enriched in the pathways and established the protein–protein interaction network. The RNAHybrid algorithm was used to predict the interaction between differentially expressed microRNAs and differentially expressed mRNAs. Four regulatory pathways (Y-82-ULK1/CDKN1A, miR-4334-5p-STAT3/PIK3R1/RPS6KA3/CAB39L, miR-4331-SCR/BCL2L1, and miR-133a-3p-BCL2L1) were identified via quantitative real-time PCR to detect the expression and correlation of candidate miRNAs and mRNAs. In conclusion, we revealed potential miRNA–mRNA regulatory networks associated with pig growth performance in the pituitary glands of Bama minipigs and Landrace pigs, which may help to elucidate the underlying molecular mechanisms of growth differences in pigs of different body sizes. Full article
(This article belongs to the Section Pigs)
Show Figures

Figure 1

17 pages, 1634 KB  
Article
Alterations of the Muscular Fatty Acid Composition and Serum Metabolome in Bama Xiang Mini-Pigs Exposed to Dietary Beta-Hydroxy Beta-Methyl Butyrate
by Changbing Zheng, Bo Song, Qiuping Guo, Jie Zheng, Fengna Li, Yehui Duan and Can Peng
Animals 2021, 11(5), 1190; https://doi.org/10.3390/ani11051190 - 21 Apr 2021
Cited by 18 | Viewed by 3628
Abstract
This study aimed to investigate the effects of dietary beta-hydroxy beta-methyl butyrate (HMB) supplementation on muscular lipid metabolism in Bama Xiang mini-pigs. Thirty-two piglets (8.58 ± 0.40 kg, barrow) were selected and fed a basal diet supplemented either with 0 (control), 0.13%, 0.64%, [...] Read more.
This study aimed to investigate the effects of dietary beta-hydroxy beta-methyl butyrate (HMB) supplementation on muscular lipid metabolism in Bama Xiang mini-pigs. Thirty-two piglets (8.58 ± 0.40 kg, barrow) were selected and fed a basal diet supplemented either with 0 (control), 0.13%, 0.64%, or 1.28% HMB for 60 days. Throughout the experiments, they had free access to clean drinking water and diets. Data of this study were analyzed by one-way ANOVA using the SAS 8.2 software package, followed by a Tukey’s studentized range test to explore treatment effects. The results showed that compared to the control, 0.13% HMB decreased the intramuscular fat (IMF) content and increased polyunsaturated fatty acids (PUFAs) in Longissimus thoracis muscle (LTM), and increased the n3 PUFAs in soleus muscles (SM, p < 0.05). Moreover, HMB supplementation led to alterations in the mRNA expression of genes related to lipid metabolism. Serum metabolome profiling showed that in both LTM and SM of Bama Xiang mini-pigs, N-Methyl-l-glutamate was positively correlated with SFA and nummularine A was negatively correlated with C18:3n3 PUFA (p < 0.05). Therefore, N-Methyl-l-glutamate and nummularine A might be potential biomarkers of the HMB-supplemented group. These results suggested that dietary HMB supplementation could decrease the IMF content and increase n3 PUFAs as well as regulate the related metabolites (N-Methyl-l-glutamate and nummularine A) in the serum of pigs. Full article
Show Figures

Figure 1

19 pages, 2318 KB  
Article
CRISPR/Cas9-Mediated Biallelic Knockout of IRX3 Reduces the Production and Survival of Somatic Cell-Cloned Bama Minipigs
by Xiangxing Zhu, Yanyan Wei, Qunmei Zhan, Aifen Yan, Juan Feng, Lian Liu and Dongsheng Tang
Animals 2020, 10(3), 501; https://doi.org/10.3390/ani10030501 - 17 Mar 2020
Cited by 18 | Viewed by 5300
Abstract
Bama minipigs are a local pig breed that is unique to China and has a high development and utilization value. However, its high fat content, low feed utilization rate, and slow growth rate have limited its popularity and utilization. Compared with the long [...] Read more.
Bama minipigs are a local pig breed that is unique to China and has a high development and utilization value. However, its high fat content, low feed utilization rate, and slow growth rate have limited its popularity and utilization. Compared with the long breeding cycle and high cost of traditional genetic breeding of pigs, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) endonuclease 9 system (CRISPR/Cas9)-mediated gene editing can cost-effectively implement targeted mutations in animal genomes, thereby providing a powerful tool for rapid improvement of the economic traits of Bama minipigs. The iroquois homeobox 3 (IRX3) gene has been implicated in human obesity. Mouse experiments have shown that knocking out IRX3 significantly enhances basal metabolism, reduces fat content, and controls body mass and composition. This study aimed to knock out IRX3 using the CRISPR/Cas9 gene editing method to breed Bama minipigs with significantly reduced fat content. First, the CRISPR/Cas9 gene editing method was used to efficiently obtain IRX3-/- cells. Then, the gene-edited cells were used as donor cells to produce surviving IRX3-/- Bama minipigs using somatic cell cloning. The results show that the use of IRX3-/- cells as donor cells for the production of somatic cell-cloned pigs results in a significant decrease in the average live litter size and a significant increase in the average number of stillbirths. Moreover, the birth weight of surviving IRX3-/- somatic cell-cloned pigs is significantly lower, and viability is poor such that all piglets die shortly after birth. Therefore, the preliminary results of this study suggest that IRX3 may have important biological functions in pigs, and IRX3 should not be used as a gene editing target to reduce fat content in Bama minipigs. Moreover, this study shows that knocking out IRX3 does not favor the survival of pigs, and whether targeted regulation of IRX3 in the treatment of human obesity will also induce severe adverse consequences requires further investigation. Full article
(This article belongs to the Section Animal Reproduction)
Show Figures

Figure 1

Back to TopTop