Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = BOCDA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3361 KiB  
Communication
A Time-Differential BOCDA Sensor Measurement System Applied to a 1 km Long SMF Using a Semiconductor Optical Amplifier as a Pump Chopper
by Bo-Hun Choi
Sensors 2024, 24(8), 2417; https://doi.org/10.3390/s24082417 - 10 Apr 2024
Cited by 2 | Viewed by 1085
Abstract
A time-differential (TD) Brillouin optical correlation domain analysis (BOCDA) sensor system was applied to measure the Brillouin gain spectrum of a 1 km long sensing optical fiber. The optical delay line used in all BOCDA measurement systems was eliminated in the TD-BOCDA system [...] Read more.
A time-differential (TD) Brillouin optical correlation domain analysis (BOCDA) sensor system was applied to measure the Brillouin gain spectrum of a 1 km long sensing optical fiber. The optical delay line used in all BOCDA measurement systems was eliminated in the TD-BOCDA system by using a bit-delayed modulation relationship between the probe and pump lightwaves. These lightwaves were phase modulated using 216-1 pseudo-random binary sequence codes at 5 Gbps. A 2 cm dispersion-shifted fiber placed at the end of the 1 km optical fiber was distinctly identified by the Brillouin frequency extracted from the Brillouin gain spectrum measurement. To investigate the measurement stability of the TD-BOCDA system, experiments were conducted under two different pumping conditions. A semiconductor optical amplifier (SOA) and an intensity modulator (MOD) were compared for the pump chopper used in the TD-BOCDA system to detect the extinction ratio of the pump and the resulting noise in the Brillouin gain measurement. The stability of the Brillouin frequency measurement from the Brillouin gain spectrum in the TD-BOCDA system was investigated by increasing the average value of the measurement using either the SOA or MOD. The repeated-measurement deviation of the system with the SOA was only half of the deviation observed in the system with the MOD. The performance of TD-BOCDA is equivalent to or better than that of conventional BOCDAs in terms of measurement reliability. Moreover, TD-BOCDA is free from the drawbacks of traditional BOCDA, which uses time-delayed fibers and varies the bit rates. Full article
(This article belongs to the Special Issue Optical Fiber Sensor Technology for Structural Health Monitoring)
Show Figures

Figure 1

21 pages, 12451 KiB  
Review
High-Spatial-Resolution Dynamic Strain Measurement Based on Brillouin Optical Correlation-Domain Sensors
by Yahui Wang, Jing Chen, Jinglian Ma, Lintao Niu and Mingjiang Zhang
Photonics 2023, 10(11), 1255; https://doi.org/10.3390/photonics10111255 - 13 Nov 2023
Cited by 1 | Viewed by 2061
Abstract
Brillouin-scattering-based sensors have been widely applied in distributed temperature or strain measurement in recent 20 years. Brillouin optical correlation-domain technology has extensive development and application prospects because of its millimeter-level spatial resolution, distribution measurement, and high accuracy. Traditional Brillouin-scattering-based sensors, requiring a time-consuming [...] Read more.
Brillouin-scattering-based sensors have been widely applied in distributed temperature or strain measurement in recent 20 years. Brillouin optical correlation-domain technology has extensive development and application prospects because of its millimeter-level spatial resolution, distribution measurement, and high accuracy. Traditional Brillouin-scattering-based sensors, requiring a time-consuming frequency-sweep process, struggle to achieve dynamic strain measurement. In this article, Brillouin optical correlation-domain analysis and reflectometry based on fast-sweep frequency and slope-assisted methods will be reviewed. The main merits, drawbacks, and performances of these schemes are compared, and the avenues for future research and development of these two technologies are also explored. Full article
(This article belongs to the Special Issue Fiber Optics and Its Applications)
Show Figures

Figure 1

19 pages, 8631 KiB  
Review
Recent Progress in Long-Range Brillouin Optical Correlation Domain Analysis
by Yahui Wang and Mingjiang Zhang
Sensors 2022, 22(16), 6062; https://doi.org/10.3390/s22166062 - 13 Aug 2022
Cited by 6 | Viewed by 2446
Abstract
Distributed optical fiber sensing technology has been widely applied in the areas of infrastructure health monitoring, national defense security, etc. The long-range high-spatial-resolution Brillouin optical correlation domain analysis (BOCDA) has extensive development and application prospects. In this paper, long-range BOCDAs are introduced and [...] Read more.
Distributed optical fiber sensing technology has been widely applied in the areas of infrastructure health monitoring, national defense security, etc. The long-range high-spatial-resolution Brillouin optical correlation domain analysis (BOCDA) has extensive development and application prospects. In this paper, long-range BOCDAs are introduced and summarized. Several creative methods underpinning measurement range enlargement, including the interval enhancement of the adjacent correlation peak (CP), improvements in the signal-to-noise ratio, and the concurrent interrogation of multiple CPs, are discussed and experimentally verified, respectively. The main drawbacks in the present BOCDA schemes and avenues for future research and development have also been prospected. Full article
(This article belongs to the Special Issue Recent Trends in Distributed Optical Fiber Sensing Technology)
Show Figures

Figure 1

12 pages, 4347 KiB  
Article
Application of the Proposed Fiber Optic Time Differential BOCDA Sensor System for Impact Damage Detection of a Composite Cylinder
by Bo-Hun Choi, Dae-Cheol Seo, Yong-Seok Kwon and Il-Bum Kwon
Appl. Sci. 2021, 11(21), 10247; https://doi.org/10.3390/app112110247 - 1 Nov 2021
Cited by 5 | Viewed by 1986
Abstract
An optical-fiber-embedded composite cylinder was fabricated using the filament winding process with an interval of 12 mm in the longitudinal direction of the cylinder. The optical fiber was wound 160 turns around the cylinder, and the straight length was about 125 m. After [...] Read more.
An optical-fiber-embedded composite cylinder was fabricated using the filament winding process with an interval of 12 mm in the longitudinal direction of the cylinder. The optical fiber was wound 160 turns around the cylinder, and the straight length was about 125 m. After a total of twelve impact events of 5, 10, 15, and 20 J, the residual strain in the cylinder was measured using the proposed time differential BOCDA sensor system. This method makes the traditionally used optical delay unnecessary while increasing the degrees of freedom of using the modulation rate, which determines the spatial resolution of this measurement system. The modulation rates of optical light in the system were applied up to 16 Gbps, which is an eight-fold increase compared to our previous experiments. Damage maps were obtained by mapping the measured residual strain onto the structure of the cylinder, and compared using three spatial resolutions of 20, 10, and 6.25 mm. In the measured damage map, expansion deformation due to impact was measured at all impact points, and the impact location on the map and the actual location on the cylinder were exactly the same. The map measured from the composite showed a clear point-symmetrical shape with an increase in sharpness as the measurement resolution increased. At the highest resolution, material expansion and compression were observed to alternate with respect to the center of impact, like the surface deformation of a liquid caused by a thrown object. Furthermore, considered together with our previous experiments, we confirmed that this phenomenon propagated from the surface of the composite material to the interior, where the optical fiber was embedded. The total amount of residual strain formed around each impact point was linearly proportional to the applied external impact energy. Full article
(This article belongs to the Special Issue Structural Monitoring Using Advanced NDT Techniques)
Show Figures

Figure 1

48 pages, 20797 KiB  
Review
Brillouin Optical Correlation-Domain Technologies Based on Synthesis of Optical Coherence Function as Fiber Optic Nerve Systems for Structural Health Monitoring
by Kazuo Hotate
Appl. Sci. 2019, 9(1), 187; https://doi.org/10.3390/app9010187 - 7 Jan 2019
Cited by 52 | Viewed by 7835
Abstract
Brillouin optical correlation-domain technologies are reviewed as “fiber optic nerve systems” for the health monitoring of large structures such as buildings, bridges, and aircraft bodies. The Brillouin scattering property is used as a sensing mechanism for strain and/or temperature. Continuous lightwaves are used [...] Read more.
Brillouin optical correlation-domain technologies are reviewed as “fiber optic nerve systems” for the health monitoring of large structures such as buildings, bridges, and aircraft bodies. The Brillouin scattering property is used as a sensing mechanism for strain and/or temperature. Continuous lightwaves are used in the technologies, and their optical coherence properties are synthesized to realize position-selective measurement. This coherence manipulation technology is called the “synthesis of optical coherence function (SOCF)”. By utilizing SOCF technologies, stimulated Brillouin scattering is generated position-selectively along the fiber, which is named “Brillouin optical correlation domain analysis (BOCDA)”. Spontaneous Brillouin scattering, which takes place at any portion along the fiber, can also be measured position-selectively by the SOCF technology. This is called “Brillouin optical correlation domain reflectometry (BOCDR)”. When we use pulsed lightwaves that have the position information, sensing performances, such as the spatial resolution, are inherently restricted due to the Brillouin scattering nature. However, in the correlation-domain technologies, such difficulties can be reduced. Superior performances have been demonstrated as distribution-sensing mechanisms, such as a 1.6-mm high spatial resolution, a fast measurement speed of 5000 points/s, and a 7000-με strain dynamic range, individually. The total performance of the technologies is also discussed in this paper. A significant feature of the technologies is their random accessibility to discrete multiple points that are selected arbitrarily along the fiber, which is not realized by the time domain pulsed-lightwave technologies. Discriminative and distributed strain/temperature measurements have also been realized using both the BOCDA technology and Brillouin dynamic grating (BDG) phenomenon, which are associated with the stimulated Brillouin scattering process. In this paper, the principles, functions, and applications of the SOCF, BOCDA, BOCDR, and BDG-BOCDA systems are reviewed, and their historical aspects are also discussed. Full article
(This article belongs to the Special Issue Optical Correlation-domain Distributed Fiber Sensors)
Show Figures

Figure 1

19 pages, 6328 KiB  
Review
High Resolution Brillouin Sensing of Micro-Scale Structures
by Atiyeh Zarifi, Birgit Stiller, Moritz Merklein and Benjamin J. Eggleton
Appl. Sci. 2018, 8(12), 2572; https://doi.org/10.3390/app8122572 - 11 Dec 2018
Cited by 9 | Viewed by 5783
Abstract
Brillouin distributed measurement techniques have been extensively developed for structural health monitoring using fibre optic nerve systems. The recent advancement in the spatial resolution capabilities of correlation-based Brillouin distributed technique have reached the sub-mm regime, making this approach a suitable candidate for monitoring [...] Read more.
Brillouin distributed measurement techniques have been extensively developed for structural health monitoring using fibre optic nerve systems. The recent advancement in the spatial resolution capabilities of correlation-based Brillouin distributed technique have reached the sub-mm regime, making this approach a suitable candidate for monitoring and characterizing integrated photonic devices. The small dimension associated with the short length of these devices—on the order of the cm- and mm-scale—requires high sensitivity detection techniques and sub-mm spatial resolution. In this paper, we provide an overview of the different Brillouin sensing techniques in various micro-scale structures such as photonic crystal fibres, microfibres, and on-chip waveguides. We show how Brillouin sensing is capable of detecting fine transverse geometrical features with the sensitivity of a few nm and also extremely small longitudinal features on the order of a few hundreds of μ m . We focus on the technique of Brillouin optical correlation domain analysis (BOCDA), which enables such high spatial resolution for mapping the opto-acoustic responses of micro-scale waveguides. Full article
(This article belongs to the Special Issue Optical Correlation-domain Distributed Fiber Sensors)
Show Figures

Figure 1

11 pages, 6163 KiB  
Article
Distributed Strain Monitoring of Railway Composite Bogies Using a Brillouin Optical Correlation Domain Analysis System
by Hyuk-Jin Yoon, Jung-Seok Kim, Kwang-Yong Song, Hyun-Woo Cho and Ju-Yeong Jung
Appl. Sci. 2018, 8(10), 1755; https://doi.org/10.3390/app8101755 - 28 Sep 2018
Cited by 4 | Viewed by 3949
Abstract
The structural deformation of a bogie frame manufactured using a composite material was monitored in real time using a distributed optical fiber sensor. The bogie frame contained an internally embedded standard single-mode optical fiber. Performance tests were conducted by applying a vertical load [...] Read more.
The structural deformation of a bogie frame manufactured using a composite material was monitored in real time using a distributed optical fiber sensor. The bogie frame contained an internally embedded standard single-mode optical fiber. Performance tests were conducted by applying a vertical load to the middle of the side beams on each side of the composite bogie frame. The strain distribution was monitored using an optical fiber sensor. A distributed optical fiber sensor system based on the Brillouin optical correlation domain analysis (BOCDA) technique with a 3 cm spatial resolution was used. The distributed strain measured using the optical fiber correlated well with the finite element (FE) analysis data, confirming that the composite bogie frame was fabricated as designed. For a vertical load of 182 kN, the maximum strain, which occurred in the middle of the side frame, increased by 1.3 times, as compared with a vertical load of 140 kN. The experiment was able to verify the balance and the structural stability of the left- and right-hand-side beams. Furthermore, it could confirm that there was a concentrated load where the side beam and the crossbeam meet, owing to a mismatch during the assembly of the composite bogie frame. Full article
(This article belongs to the Special Issue Optical Correlation-domain Distributed Fiber Sensors)
Show Figures

Figure 1

14 pages, 3909 KiB  
Article
Brillouin Optical Correlation Domain Analysis in Composite Material Beams
by Yonatan Stern, Yosef London, Eyal Preter, Yair Antman, Hilel Hagai Diamandi, Maayan Silbiger, Gadi Adler, Eyal Levenberg, Doron Shalev and Avi Zadok
Sensors 2017, 17(10), 2266; https://doi.org/10.3390/s17102266 - 2 Oct 2017
Cited by 5 | Viewed by 4873
Abstract
Structural health monitoring is a critical requirement in many composites. Numerous monitoring strategies rely on measurements of temperature or strain (or both), however these are often restricted to point-sensing or to the coverage of small areas. Spatially-continuous data can be obtained with optical [...] Read more.
Structural health monitoring is a critical requirement in many composites. Numerous monitoring strategies rely on measurements of temperature or strain (or both), however these are often restricted to point-sensing or to the coverage of small areas. Spatially-continuous data can be obtained with optical fiber sensors. In this work, we report high-resolution distributed Brillouin sensing over standard fibers that are embedded in composite structures. A phase-coded, Brillouin optical correlation domain analysis (B-OCDA) protocol was employed, with spatial resolution of 2 cm and sensitivity of 1 °K or 20 micro-strain. A portable measurement setup was designed and assembled on the premises of a composite structures manufacturer. The setup was successfully utilized in several structural health monitoring scenarios: (a) monitoring the production and curing of a composite beam over 60 h; (b) estimating the stiffness and Young’s modulus of a composite beam; and (c) distributed strain measurements across the surfaces of a model wing of an unmanned aerial vehicle. The measurements are supported by the predictions of structural analysis calculations. The results illustrate the potential added values of high-resolution, distributed Brillouin sensing in the structural health monitoring of composites. Full article
(This article belongs to the Special Issue Sensor Technologies for Health Monitoring of Composite Structures)
Show Figures

Figure 1

Back to TopTop