Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = Argentine rivers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 18493 KB  
Article
Aeolian Landscapes and Paleoclimatic Legacy in the Southern Chacopampean Plain, Argentina
by Enrique Fucks, Yamile Rico, Luciano Galone, Malena Lorente, Sebastiano D’Amico and María Florencia Pisano
Geographies 2025, 5(3), 33; https://doi.org/10.3390/geographies5030033 - 14 Jul 2025
Cited by 1 | Viewed by 2064
Abstract
The Chacopampean Plain is a major physiographic unit in Argentina, bounded by the Colorado River to the south, the Sierras Pampeanas and Subandinas to the west, and the Paraná River, Río de la Plata Estuary, and the Argentine Sea to the east. Its [...] Read more.
The Chacopampean Plain is a major physiographic unit in Argentina, bounded by the Colorado River to the south, the Sierras Pampeanas and Subandinas to the west, and the Paraná River, Río de la Plata Estuary, and the Argentine Sea to the east. Its subsurface preserves sediments from the Miocene marine transgression, while the surface hosts some of the country’s most productive soils. Two main geomorphological domains are recognized: fluvial systems dominated by alluvial megafans in the north, and aeolian systems characterized by loess accumulation and wind erosion in the south. The southern sector exhibits diverse landforms such as deflation basins, ridges, dune corridors, lunettes, and mantiform loess deposits. Despite their regional extent, the origin and chronology of many aeolian features remain poorly constrained, as previous studies have primarily focused on depositional units rather than wind-sculpted erosional features. This study integrates remote sensing data, field observations, and a synthesis of published chronometric and sedimentological information to characterize these aeolian landforms and elucidate their genesis. Our findings confirm wind as the dominant morphogenetic agent during Late Quaternary glacial stadials. These aeolian morphologies significantly influence the region’s hydrology, as many permanent and ephemeral water bodies occupy deflation basins or intermediate low-lying sectors prone to flooding under modern climatic conditions, which are considerably wetter than during their original formation. Full article
Show Figures

Figure 1

22 pages, 10690 KB  
Article
Daily Streamflow of Argentine Rivers Analysis Using Information Theory Quantifiers
by Micaela Suriano, Leonidas Facundo Caram and Osvaldo Anibal Rosso
Entropy 2024, 26(1), 56; https://doi.org/10.3390/e26010056 - 9 Jan 2024
Cited by 4 | Viewed by 2401
Abstract
This paper analyzes the temporal evolution of streamflow for different rivers in Argentina based on information quantifiers such as statistical complexity and permutation entropy. The main objective is to identify key details of the dynamics of the analyzed time series to differentiate the [...] Read more.
This paper analyzes the temporal evolution of streamflow for different rivers in Argentina based on information quantifiers such as statistical complexity and permutation entropy. The main objective is to identify key details of the dynamics of the analyzed time series to differentiate the degrees of randomness and chaos. The permutation entropy is used with the probability distribution of ordinal patterns and the Jensen–Shannon divergence to calculate the disequilibrium and the statistical complexity. Daily streamflow series at different river stations were analyzed to classify the different hydrological systems. The complexity-entropy causality plane (CECP) and the representation of the Shannon entropy and Fisher information measure (FIM) show that the daily discharge series could be approximately represented with Gaussian noise, but the variances highlight the difficulty of modeling a series of natural phenomena. An analysis of stations downstream from the Yacyretá dam shows that the operation affects the randomness of the daily discharge series at hydrometric stations near the dam. When the station is further downstream, however, this effect is attenuated. Furthermore, the size of the basin plays a relevant role in modulating the process. Large catchments have smaller values for entropy, and the signal is less noisy due to integration over larger time scales. In contrast, small and mountainous basins present a rapid response that influences the behavior of daily discharge while presenting a higher entropy and lower complexity. The results obtained in the present study characterize the behavior of the daily discharge series in Argentine rivers and provide key information for hydrological modeling. Full article
(This article belongs to the Special Issue Selected Featured Papers from Entropy Editorial Board Members)
Show Figures

Figure 1

22 pages, 3235 KB  
Article
Ant Diversity Is Enhanced by Ecological Infrastructures in Agroecosystems: A Case Study in Irrigated Mediterranean Farmland
by Vera Zina, André Fonseca, Gonçalo Duarte, Sofia Conde, Maria Rosário Fernandes, Maria Teresa Ferreira and José Carlos Franco
Agronomy 2022, 12(11), 2690; https://doi.org/10.3390/agronomy12112690 - 29 Oct 2022
Cited by 5 | Viewed by 3669
Abstract
We aimed at assessing the role of ecological infrastructures (EI) in promoting ant biodiversity in floodplain Mediterranean agricultural crops. We examined and compared ant communities at the interface between EI (remnant vegetation patches) and adjoining agricultural matrix (maize, rice, others) in irrigated farmland. [...] Read more.
We aimed at assessing the role of ecological infrastructures (EI) in promoting ant biodiversity in floodplain Mediterranean agricultural crops. We examined and compared ant communities at the interface between EI (remnant vegetation patches) and adjoining agricultural matrix (maize, rice, others) in irrigated farmland. The study was conducted in 2019, in two agricultural landscapes in the valleys of the rivers Tagus and Sorraia, Central Portugal. We used the Akaike information criterion for model selection and to distinguish among a set of possible models describing the relationship between: the ant richness in the agricultural matrix and drivers associated with the surrounding landscape and crop type; the ant richness in EI and the habitat quality of EI patches, the characteristics of the surrounding landscape, and the presence of invasive ant species. We found that: EI patches supported a higher ant diversity and an overall specialized ant community, distinctive from the agricultural matrix; location but not vegetation physiognomy influenced ant diversity; ant richness within the agricultural matrix decreased with the distance to the EI, and that this relationship was influenced by the crop type; and that ant richness in the EI was associated with the absence of the invasive Argentine ant and the area of terrestrial EI in the surrounding landscape. Full article
(This article belongs to the Topic Insects in Sustainable Agroecosystems)
Show Figures

Figure 1

14 pages, 7186 KB  
Review
Provenance and Paleoenvironmental Studies of Cretaceous African and South American Kaolins: Similarities and Differences
by Olaonipekun Oyebanjo, Nenita Bukalo and Georges-Ivo Ekosse
Minerals 2021, 11(10), 1074; https://doi.org/10.3390/min11101074 - 30 Sep 2021
Cited by 4 | Viewed by 2956
Abstract
The African and South American continents are of great interest in continental drift studies. Hence, this study assesses the possible correlations in the provenance and paleoenvironment of selected Cretaceous Nigerian and Cameroonian (in Africa), and Argentine and Brazilian (in South America) kaolins through [...] Read more.
The African and South American continents are of great interest in continental drift studies. Hence, this study assesses the possible correlations in the provenance and paleoenvironment of selected Cretaceous Nigerian and Cameroonian (in Africa), and Argentine and Brazilian (in South America) kaolins through an analysis of their mineralogical and geochemical characteristics. On the basis of their mineralogical composition, the Nigerian Lakiri and Brazilian soft Capim River kaolins are predominantly characterised as pure kaolins, whereas the kaolins from Cameroon (except for Yatchika) and Argentina are mainly considered as sandy kaolins. The present study revealed that the Brazilian soft Capim River kaolin had the highest kaolinite structural order, whilst the Argentine Santa Cruz kaolin had the least. The kaolins from Nigeria, Cameroon, and Argentina were dominated by subhedral to anhedral kaolinite crystals relative to the Brazilian kaolin, which possess more euhedral kaolinite crystals. The kaolins were formed by the intense weathering of intermediate to felsic rocks under anoxic conditions, which is consistent with the structural framework of the basins. The average paleotemperatures obtained for the kaolins (except for the one from Santa Cruz) indicates that the paleoweathering took place under tropical climates. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

33 pages, 1425 KB  
Article
Use of Natural and Applied Tracers to Guide Targeted Remediation Efforts in an Acid Mine Drainage System, Colorado Rockies, USA
by Rory Cowie, Mark W. Williams, Mike Wireman and Robert L. Runkel
Water 2014, 6(4), 745-777; https://doi.org/10.3390/w6040745 - 27 Mar 2014
Cited by 19 | Viewed by 13115
Abstract
Stream water quality in areas of the western United States continues to be degraded by acid mine drainage (AMD), a legacy of hard-rock mining. The Rico-Argentine Mine in southwestern Colorado consists of complex multiple-level mine workings connected to a drainage tunnel discharging AMD [...] Read more.
Stream water quality in areas of the western United States continues to be degraded by acid mine drainage (AMD), a legacy of hard-rock mining. The Rico-Argentine Mine in southwestern Colorado consists of complex multiple-level mine workings connected to a drainage tunnel discharging AMD to passive treatment ponds that discharge to the Dolores River. The mine workings are excavated into the hillslope on either side of a tributary stream with workings passing directly under the stream channel. There is a need to define hydrologic connections between surface water, groundwater, and mine workings to understand the source of both water and contaminants in the drainage tunnel discharge. Source identification will allow targeted remediation strategies to be developed. To identify hydrologic connections we employed a combination of natural and applied tracers including isotopes, ionic tracers, and fluorescent dyes. Stable water isotopes (δ18O/δD) show a well-mixed hydrological system, while tritium levels in mine waters indicate a fast flow-through system with mean residence times of years not decades or longer. Addition of multiple independent tracers indicated that water is traveling through mine workings with minimal obstructions. The results from a simultaneous salt and dye tracer application demonstrated that both tracer types can be successfully used in acidic mine water conditions. Full article
(This article belongs to the Special Issue Environmental Tracers)
Show Figures

Graphical abstract

Back to TopTop