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Abstract: This paper analyzes the temporal evolution of streamflow for different rivers in Argentina
based on information quantifiers such as statistical complexity and permutation entropy. The main
objective is to identify key details of the dynamics of the analyzed time series to differentiate the de-
grees of randomness and chaos. The permutation entropy is used with the probability distribution of
ordinal patterns and the Jensen–Shannon divergence to calculate the disequilibrium and the statistical
complexity. Daily streamflow series at different river stations were analyzed to classify the different
hydrological systems. The complexity-entropy causality plane (CECP) and the representation of
the Shannon entropy and Fisher information measure (FIM) show that the daily discharge series
could be approximately represented with Gaussian noise, but the variances highlight the difficulty
of modeling a series of natural phenomena. An analysis of stations downstream from the Yacyretá
dam shows that the operation affects the randomness of the daily discharge series at hydrometric
stations near the dam. When the station is further downstream, however, this effect is attenuated.
Furthermore, the size of the basin plays a relevant role in modulating the process. Large catchments
have smaller values for entropy, and the signal is less noisy due to integration over larger time scales.
In contrast, small and mountainous basins present a rapid response that influences the behavior of
daily discharge while presenting a higher entropy and lower complexity. The results obtained in the
present study characterize the behavior of the daily discharge series in Argentine rivers and provide
key information for hydrological modeling.

Keywords: permutation entropy; statistical complexity; streamflow series; Argentine rivers

1. Introduction

Proper water management has always been a key to societies’ progress. For this
reason, solutions have been developed to modify spatial and temporal water availability
to adapt it to human needs. In the global context of climate change that affects the region,
it is imperative to assess present and future water availability to optimize water resource
management and planning.

The hydrological cycle is a complex system [1]. It consists of a coordinated and
balanced interaction between the atmosphere, the ocean, and the land that controls the
planet’s temperature. It moves a large amount of matter and energy, which results in a
highly variable process in space and time, and this variability exists at all scales, from
centimeters to the continent scale, from minutes to years [2]. For these reasons, hydrological
modeling plays a crucial role in capturing the complex hydrology of large basins and
informing basin development decisions through comprehensive modeling approaches [3].

A classification framework that categorizes basins into different groups and sub-
groups is necessary for more effective and efficient model selection and generalization
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in the modeling approach [4–6]. For example, catchment classification can be used in
transboundary rivers that face water usage competition across distinct hydrological charac-
teristics [7]. The information can aid stakeholders in irrigation planning, navigation, and
flood risk management, among others.

A framework is required to classify basins into different groups based on their hydrolog-
ical characteristics. Nonlinear dynamic concepts offer a suitable methodology. Several studies
indicate that complexity plays a part in the classification of hydrological systems [8–10].

For this purpose, the complexity-entropy causality plane (CECP) has been introduced
as a diagnostic diagram. It plots statistical complexity versus entropy, applying nonlinear
dynamics analysis to classify signals according to their degrees of randomness and com-
plexity [11,12]. This methodology presents the temporal relationship among the values of
the time series, taking into account time causality [13].

There are several applications in the field of hydrology. Almost 500 series of daily
discharge rivers from different countries were studied in [14]. The results show that the
data are a mixture of random and deterministic processes. A comparison with the k-noise
series in the CECP is proposed to quantify the observed differences. In [15], the CECP was
conducted for the analysis of 80 series of daily flows at different stations in the United
States over a period of 75 years. It was found that both chaotic and stochastic systems can
be compatible with the daily streamflow dynamics and that the CECP can differentiate the
signals in the presence of moderate observational noise.

Another application of the methodology is to analyze the behavior in the flow series
relating to changes in the basin, such as the construction of dams or land use change, as
well as the influence of long-term climatic phenomena. An example of this application is
presented in [16,17], which shows the influence of the construction of the Sobradinho dam
on the series of daily flows of the São Francisco River in Brazil. The study found different
patterns of complexity and entropy. In addition, the close relationship between the flow
dynamics and the El Niño Southern Oscillation phenomenon was confirmed.

In [18], statistical complexity was used as a metric for hydrological alteration at the
basin scale. The daily streamflow records of 22 urban watersheds in US cities were studied
to analyze hydrological changes due to urbanization. The findings indicate that, in urban
watersheds, there is a tendency for a decrease in complexity and an increase in entropy as
hydrological alteration intensifies.

This paper analyzes the temporal evolution of stream flows in different rivers in
Argentina, utilizing information quantifiers to identify the complexity-entropy causality
plane, which consequently allows for the classification of the different hydrological systems.
Argentina is a large country; the continental area is 2,791,810 km2 (Instituto Nacional de
Estadística y Censos de la República Argentina (INDEC)) and water resources are not
uniformly distributed. There are basins of different sizes with varying characteristics
depending on their location. Also, a high percentage of the territory is characterized by
arid or semi-arid climates, where water demand exceeds availability.

This study aims to improve knowledge about the behavior of the daily discharge
series selected, providing relevant information for hydrological modeling. This work is
organized into the following sections: Methodology: description of applied methods and
equations, Data: description of the source of information and characteristics of the used
time series, Results: development of the outcomes, interpretation analysis, and Conclusions:
a summary of the main conclusions obtained from this work.

2. Materials and Methods
2.1. Methodology

For a given arbitrary probability distribution P = {pi: i = 1, . . ., N}, the Shannon
logarithmic information measure is defined by:

S[P] = −∑N
i=1 piln(pi) , (1)
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and it is considered a measure of the uncertainty associated with the physical processes
described by P. If S[P]= 0, it is possible to predict with certainty which of the possible
scenarios i, with associated probabilities given by pi, will actually occur. On the contrary,
our ignorance is at its maximum for a uniform distribution. In [19], it is presented as a
measure of statistical complexity capable of detecting key details of the dynamics. This is
defined through the product:

CJS[P] = QJ [P, Pe] . HS[P], (2)

and the generalized Shannon entropy [20] is:

HS =
S[P]
Smx

(3)

with Smáx = S[Pe] = ln(N), 0 ≤ Hs ≤ 1 and Pe = 1/N, . . ., 1/N the uniform distribution.
The disequilibrium is defined in terms of the Jensen–Shannon divergence:

Qj[P, Pe] = Q0 J[P, Pe], (4)

being Q0 a normalization constant equal to the inverse of the maximum possible value of
J[P,Pe] and the Jensen–Shannon divergence:

J[P, Pe] = S
[

P + Pe

2

]
− S[P]

2
− S[Pe]

2
(5)

The method of ordinal patterns [13], developed by Bandt and Pompe (2002), is applied
to determine the probability distribution function P, as it takes into account the temporal
causality within the dynamics of the process.

The approach is based on the sequence of values that occurs in the time series, which
is replaced by the corresponding range sequence. Given a time series {xt: t = 1, . . ., N}, an
embedding dimension D ≥ 2 (D ∈ N), and the delay time τ (τ ∈ N), the D-ordinal pattern
is generated by:

s →
{

Xs−(D−1)τ , Xs−(D−2)τ , . . . , Xs−τ , Xs

}
(6)

For every time instant s, a D-dimensional vector is assigned, and it results from the
evaluation of the time series in the s − (D − 1) τ, . . ., s − τ, s instants. A greater D value
means greater information about the pass incorporated in the resultant vector. The D-
ordinal patterns related to the instant s are referred to as the permutation π = {r0, r1, . . .,
rD−1} of {0, 1, . . ., D − 1} defined by:

xs−r0τ ≥ xs−r1τ ≥ · · · ≥ xs−rD−2τ ≥ xs−rD−1τ . (7)

In this way, the vector defined by Equation (6) becomes the unique symbol π. With
the objective of finding a unique result, ri < ri−1 if xs−riτ < xs−ri−1τ is considered. As
the value of xt has a continuous distribution, equal consecutive values are unusual. A
graphic example of the determination of the permutations πi from order D = 3 and τ = 1 is
shown in Figure 1. The possible combinations (ordinal patterns πi) for D = 3 are presented
at the top of Figure 1, while the analysis for a discharge series and τ = 1 is found at the
bottom. For every possible D! order (permutations) πi from order D, their associated
relative frequencies can be computed as the number of times that this sequence appears
in the series, and thus the number divided by the total of sequences. Consequently, the
ordinal pattern distribution probability for the time series given is obtained.

Regarding the selection of the parameters, Bandt and Pompe [13] applied 3 ≤ D ≤ 7
and τ = 1. The specific value of D should be the minimum sampling frequency that retains
all the information about the time structure of the signal [15]. To distinguish between
deterministic and stochastic dynamics, it is suggested that N ≫ D!, where N represents the
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length of the time series [12]. The selection of τ = 1 captured the daily temporal structure
of the discharge series [18], but long-term temporal variabilities were studied in [15].
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found at the bottom. By replacing the original values with their corresponding rankings, the pattern
is obtained (adapted from [21]).

The complexity-entropy causality plane (CECP) is the representation of plotting the
permutation statistical complexity CJS versus the generalized Shannon entropy HS and
the bounds for an admissible region that only depends on the embedding dimension
D [8,9]. The complexity remains within the bounds of minimum and maximum complexity,
and a maximum and minimum envelope complexity as a function of the entropy can be
calculated [22]. A schematic illustration of the CECP is shown in Figure 2. Maximum and
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minimum boundaries are calculated for D = 5 (Cmáx and Cmín, respectively) with the
approximate representation of chaotic and stochastic zone classification.
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Figure 2. Schematic representation of the complexity-entropy causality plane (CECP) based on [22].
Maximum and minimum boundaries for D = 5 are represented, as well as colored noise with the
approximate representation of chaotic and stochastic zones.

Another graphic representation is the Fisher–Shannon plane, which is calculated using
Bandt and Pompe [13] to determine the probability distribution of a time series. This
method can uncover the informational properties of the planar location [23]. The Fischer–
Shannon casualty plane Hs x F is calculated, where Hs is the generalized Shannon entropy
in Equation (3) and F is the Fisher’s information measure (FIM) [24] as a measure of the
gradient content of the distribution f (x), as follows:

F[ f ] =
∫
∆

1
f (x)

[
d f (x)

dx

]2
dx = 4

∫
∆

[
dΨ(x)

dx

]2
. (8)

FIM could be interpreted as a measure of the ability to estimate the amount of infor-
mation that can be extracted from a set of measurements [25]. For a discrete environment,
the best-behaved expression to use [26] is the discrete normalized FIM, as given by:

F[P] = F0

N−1

∑
i=1

[
(pi+1)

1
2 − (pi)

1
2
]2

(9)

and the normalization constant F0 is given by:

F0 =

{
1 i f pi∗ = 1 f or i∗ = 1 or i∗ = N and pi = 0 ∀i ̸= i∗

0 otherwise

}
(10)

The algorithms are obtained from the Python library ordpy: A Python package for
data analysis with permutation entropy and ordinal network methods [27]. The color noise
series was generated with the library colorednoise (by Felix Patzel on github) that generates
Gaussian distributed noise with a power law spectrum based on the algorithm in [28]. Plots
are created using the matplotlib [29], seaborn [30], and geopandas [31] Python libraries.

To summarize, the main statistical tools used in this paper are as follows:

• Permutation entropy is a measure of the uncertainty associated with the analyzed pro-
cess and is calculated by generalized Shannon entropy [20] and ordinal patterns [13].

• Statistical complexity is a measure capable of detecting key details of the dynamics [19].
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• Ordinal patterns are a methodology to determine the probability distribution function
of the analyzed time series. It takes into account the temporal causality within the
dynamics of the process [13].

• The complexity-entropy causality plane is a graphical representation for visualizing
and classifying the behavior of time series. Obtained by plotting values of statistical
complexity against permutation entropy [8,9,17].

• A Fisher information measure is a representation of the ability to estimate the amount
of information that can be extracted from a time series. The Fisher–Shannon represen-
tation plane is another visualization tool for characterized time series [24,25].

2.2. Data

The methodology was applied to 14 daily discharge series at different hydrometric
stations across Argentina. The data were obtained from the National Hydrological Network
of the National Water Information System of the Secretariat of Infrastructure and Water
Policy (Sistema Nacional de Información Hídrica: https://www.argentina.gob.ar/obras-
publicas/hidricas/base-de-datos-hidrologica-integrada, accessed on 19 February 2021).

The main information associated with the stations is shown in Table 1, and their
geographical locations are presented in Figure 3. The selection of data was based on the
length and completeness of the discharge series (almost more than 50 years of record) and
on its ability to represent different types of hydrological processes. Generally, the selected
stations in the southwest of the country are located in smaller basins, and the streamflow is
mainly produced by snow, while the discharge in the northwest of Argentina is generated
by rainwater.

Table 1. Basic information about the basins and records of discharge series used in this study.

River Station Basin Area (km2) Record (Years)

Colorado Buta Ranquil 15,300 1990–2019
Pilcomayo La Paz 96,000 1960–2019
Paraguay Puerto Pilcomayo 800,000 1910–2017

Paraná Corrientes 1,950,000 1904–2019
Bermejo Pozo Sarmiento 25,000 1940–2019

Mendoza Guido 8180 1956–2019
Carrenleufú La Elena 1500 1954–2019

Uruguay Paso de los Libres 189,000 1908–2019
Atuel La Angostura 3800 1931–2019

Bermejo El Colorado 65,736 1968–2019
Paraná Itatí 1,600,000 1910–2019

Bermejo Aguas Blancas 4850 1944–2019
Paraná Túnel Subfluvial 2,302,000 1904–2019

Bermejo Balapuca 4420 1971–2019

The daily discharge series from each hydrometric station was downloaded, followed
by an analysis of the missing data. Among the 14 series examined, 11 exhibited less than 3%
missing data, one series had less than 5%, and two series had less than 10%. Subsequently,
a daily deseasonalized discharge series was calculated for each daily discharge series with
the objective of removing seasonal patterns. The daily deseasonalized discharge series was
obtained from the equation:

Qdi,j,k =
Qi,j,k − Qi,j

σi,j
, (11)

where Qdi,j,k is the discharge deseasonalized for the i-th day, j-th month, and k-th year; Qi,j,k

is the daily discharge for the i-th day, j-th month, and k-th year; Qi,j is the average of all the
i days and j month; and σi,j is the standard deviation of all i days and j month for every
year of the record [32].

https://www.argentina.gob.ar/obras-publicas/hidricas/base-de-datos-hidrologica-integrada
https://www.argentina.gob.ar/obras-publicas/hidricas/base-de-datos-hidrologica-integrada
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Figure 3. Geographical locations of the 14 hydrometric stations assessed in this study for analyzing
the daily discharge series. The map displays the extent of Argentina along with its provincial and
international boundaries (adapted from: the Instituto Geográfico Nacional de la República Argentina).
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An example of daily discharge and deseasonalized discharge series for the Bermejo
River at Balapuca station is shown in Figure 4. The same procedure was applied to all
series of the stations listed in Table 1.
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Figure 4. Daily discharge (above) and deseasonalized discharge (bottom) series for the Bermejo River
at Balapuca hydrometric station (data from https://www.argentina.gob.ar/obras-publicas/hidricas/
base-de-datos-hidrologica-integrada, accessed on 19 February 2021).

3. Results and Discussion

The results obtained from applying the methodology to the daily discharge and the
deseasonalized discharge series are shown in Appendix A. The permutation entropy and
statistical complexity were calculated for τ = 1 and varying D from 3 to 7 (Figures A1–A4).

The permutation entropy and complexity were applied to the daily discharge and
deseasonalized discharge series for 3 < D < 7. In both cases, the permutation entropy
decreases while the parameter D increases. For the complexity measure, the behavior is
different. The complexity and the parameter D increase simultaneously, but the slope is
different among the time series studied. A possible explanation could be related to the fact
that the record period for the different series is not the same.

The same analysis was performed for the shuffled series of daily discharge and
deseasonalized discharge series (Appendix A: Figures A5–A8). The results showed that in
both cases, the entropy approaches 1 and the complexity approaches 0 for daily discharge
and for deseasonalized discharge time series. These results indicated that the sorting of the
values has an impact on the behavior of the time series in terms of entropy and complexity.
These results showed that, for the studied discharge time series, the sequential arrangement
of values significantly influences the process structure and the information obtained from it.

For future analysis in this study, D = 5 will be considered, following the criteria that
the record length of the series N should be N >> D!.

The complexity-entropy causality plane (CECP) of Shannon and the Fischer–Shannon
plane for the daily discharge series are shown in Figures 5 and 6, respectively. The same
procedures were repeated for the daily deseasonalized discharge series. They are shown
in Figures 7 and 8. The methodology was also applied to a dynamic stochastic series of

https://www.argentina.gob.ar/obras-publicas/hidricas/base-de-datos-hidrologica-integrada
https://www.argentina.gob.ar/obras-publicas/hidricas/base-de-datos-hidrologica-integrada
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k-noises (noise with power spectrum frequency dependence fitted by f (−k) values), with k
ranging from 0.00 to 3.50, with intervals of 0.25 and 10 random simulations for every k.
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The CECP showed that, in most cases, the daily streamflow series from different
hydrometric stations exhibit similar behavior compared to Gaussian noise. In particular,
this occurred for the parameter k between 2 and 3, and it was consistent with the results
found in other studies [14,15]. The approximation to the noise series fits better in the
deseasonalized discharge series, and the same conclusion is reached for the Fisher–Shannon
plane. The results obtained from the Fisher–Shannon plane analysis for both the daily
river discharge and its deseasonalized series. This revealed that the time series cannot be
adequately described as Gaussian noise for the Paraná River at Corrientes station and the
Uruguay River at Paso de los Libres station.
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These findings demonstrated that modeling daily discharge series as Gaussian noise
may be more appropriate when using deseasonalized series. However, the results highlight
the difficulty of characterizing natural phenomena as either stochastic or chaotic. Not
all discharge series exhibit the same behavior, requiring a thorough examination on a
case-by-case basis. Quantifying the characteristics of different discharge series through
information quantifiers allows for a better definition of which tools to employ in subsequent
hydrological modeling, such as data-driven forecasting.

In [16,17], the authors investigated the influence of the construction of the Sobradinho
dam on the daily streamflow of the São Francisco River. The authors found that there are
different complexity and entropy patterns before and after the construction, in particular
a higher permutation entropy. This shows that the operation of the reservoir induces
decreased regularity. Following this methodology, a comparison of three selected stations
was conducted. The generalized permutation entropy was calculated for the daily discharge
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time series at three stations downstream of the Yacyretá hydropower dam, situated in the
upper basin of the Paraná River between Argentina and Paraguay. Yacyretá is a run-of-
the-river power plant that has 20 Kaplan turbines with a total power of 3200 MW, and the
area of the lake is 1600 km2 (Entidad Binacional Yacyretá). The comparison was conducted
between the data series prior to the construction of the dam in 1983 and the period after
1994, when the first turbine became operational. The results are shown in Table 2.

Table 2. Comparison of the permutation entropy for the daily discharge series at Paraná River in
three stations downstream of the Yacyretá dam before and after the construction.

River Station
Basin Area

(km2)

Permutation Entropy

Pre Yacyretá Post Yacyretá Variation

Paraná
Itatí 1,600,000 0.48 0.66 27%

Corrientes 1,950,000 0.51 0.62 18%
Túnel Subfluvial 2,302,000 0.47 0.50 6%

Consistent with the findings in [16,17], the results showed that after the construction
of Yacyretá, the permutation entropy was higher than before. This occurred even if the
analysis was not conducted with data from a hydrometric station immediately downstream
of the dam. The findings indicated that the operation of Yacyretá affects the randomness of
the daily discharge series when the hydrometric station is immediately downstream of the
dam. However, when the station is further downstream, this effect is attenuated.

The added value of this study lies in the conclusion that the impact of the dam
operation on entropy diminishes as one moves further downstream from the dam. An
explanation for that behavior is that the size of the basin plays an important role in modu-
lating the process on a daily scale. Large catchments have smaller values for entropy, and
the signal is less noisy due to integration over larger time scales [14].

Other studies have also found that the statistical properties of river flow fluctuations in
daily data depend on the basin area [33,34]. For this reason, prediction models should not
be directly transferred across watersheds of varying sizes without taking into consideration
the effects of the basin area. The potential influence of a co-induced climatic effect, such
as climate change or the El Niño/Southern Oscillation (ENSO), is not considered here.
However, it could represent an additional factor contributing to changes in the dynamics
of the discharge series.

These findings highlight that analyzing streamflow series entails examining the re-
sponse to various processes occurring within the basin. Some are concentrated, others are
spatially distributed, and their integration determines the varying degrees of influence
among them. The information quantifiers could be used as a tool to assess the influence of
each process and, therefore, use this knowledge to improve the modeling of water resources.

A geospatial analysis was conducted to compare the different cases and determine
if any patterns could be identified in the obtained results. The hydrometric stations
were geographically located, and the entropy and complexity indicators were color-coded
depending on the range of values obtained. The results are shown in Figures 9 and 10 for
the deseasonalized discharge series and in Figures 11 and 12 for the daily discharge series.

On the one hand, Figures 9 and 11 showed that the values for complexity of the
discharge series seem to be similar to the deseasonalized discharge series. In both cases,
the complexity varied approximately between 0.15 and 0.30 and was greater in the east
than in the west, coinciding with the discharge series of less entropy.

On the other hand, Figures 10 and 12 showed that for entropy, the results are similar
for both the discharge series and the deseasonalized discharge series. In the first case, the
entropy varied between 0.45 and 0.85. In the second case, it varied between 0.55 and 0.90,
finding higher values in stations that are located in smaller basins in the west (except for
the La Elena station) and decreasing values towards the east. The Paraná, Uruguay, and
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Paraguay rivers, along with the El Colorado station at the Bermejo River, exhibited the
lowest entropy values among all stations.
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The stations that presented higher entropy are La Angostura station in the Atuel River,
Buta Ranquil station in the Colorado River, La Elena station in the Balapuca River, Aguas
Blancas and Pozo Sarmiento stations in the Bermejo River, and Misión La Paz station in
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the Pilcomayo River. On the contrary, Corrientes and Túnel Subfluvial stations in the
Paraná River, Paso de los Libres station in the Uruguay River, El Colorado station in the
Bermejo River, and Puerto Pilcomayo station in the Paraguay River presented a lower value
of entropy.
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A possible explanation is that basins with a smaller area and the influence of highlands
or mountains present a rapid response, affecting the behavior of the daily discharge. In
basins with a larger area and flat topography, however, the response is slower. This implies
that the catchment area plays a role in softening the daily variations and decreasing the
degree of randomness in the series.
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Based on these findings, it can be concluded that the geolocated representation of
the results enables their integration with other influential features affecting discharge
series, for example, topography and climate. This facilitates the unified analysis of results
across diverse stations and offers the possibility of identifying patterns that can be further
analyzed in future studies.
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Nowadays, several hydrological modeling techniques are available for water resource
forecasting and management. However, in countries like Argentina, where the distribution
of water resources is heterogeneous and the characteristics of basins are diverse, selecting
an accurate hydrological model can be challenging. The obtained results offer a framework
for classifying different hydrological systems, facilitating more efficient model selection in
order to support decision-making.

4. Conclusions

This paper analyzed the temporal evolution of the streamflow of different rivers in
Argentina based on information quantifiers such as statistical complexity and permutation
entropy. The main objective was to identify key details of the dynamics of the processes
and quantify them to differentiate the degrees of randomness and chaos.

The analysis carried out for the shuffled series shows that the sorting of data has an
impact on the structure and the measures of information.

The complexity-entropy causality plane (CECP) and the representation of the en-
tropy and Fisher information measures showed that the daily discharge series could be
approximately represented with Gaussian noise for a parameter k between 2 and 3. This ap-
proximation fits better for the deseasonalized discharge series. The Fisher–Shannon plane
presented an important difference with respect to the Gaussian noise for the Corrientes
station at the Parana River and Paso de los Libres at the Uruguay River, highlighting the
difficulty of modeling a series of natural phenomena observed in real life.

An analysis of the daily discharge time series at the stations at the Paraná River down-
stream from the location where the Yacyretá hydroelectric dam was carried out for different
periods. The results indicated that the operation of the dam impacts the randomness of
the daily discharge series when the hydrometric station is in close proximity to the dam.
However, this effect is attenuated when the station is situated further downstream. An
explanation for such behavior may be that the size of the basin area plays an important role
in modulating the process on a daily scale.

These findings highlight that analyzing streamflow time series entails examining
the response to various processes occurring within the basin—some concentrated, others
spatially distributed—whose integration determines the varying degrees of influence
among them. The information quantifiers could be a tool to assess the influence of each
process, thereby improving our ability to model water resources.

In addition, a geospatial analysis was carried out. On the one hand, small and
mountainous basins presented a rapid response that influenced the behavior of daily
discharge and consequently presented a higher entropy and lower complexity. On the other
hand, basins with a larger area and smooth topography presented a slower response, and
thus the results show a lower entropy and higher complexity. The catchment area plays
a relevant role by softening the daily changes and decreasing the degree of randomness
of the discharge series. The geolocated representation facilitated the unified analysis of
results across diverse stations and offers the possibility of identifying patterns that can be
further analyzed in future studies.

In this analysis, we found that information quantifiers such as permutation entropy
and statistical complexity can assess the dynamics of daily discharge time series in Argen-
tine rivers. In particular, the characterization of different basins and the impact of dam
operation on the discharge series downstream were analyzed.

These findings highlight how information quantifiers can enhance our understand-
ing of hydrological processes. This methodology not only provides a better insight into
streamflow dynamics but also allows for the integration of this understanding into fu-
ture hydrological models, enabling more accurate predictions and more effective water
resource management strategies. Future research could involve investigating the influence
of climatic effects such as climate change or the El Niño/Southern Oscillation (ENSO).
Investigating the interconnections between these factors and their potential influence on hy-
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drological patterns would provide a more holistic understanding of the evolving dynamics
within water systems.

Author Contributions: All the authors made significant contributions to this work. Conceptualization,
M.S. and L.F.C.; methodology, M.S., L.F.C. and O.A.R.; supervision, O.A.R.; validation, O.A.R.;
visualization, M.S.; writing—original draft, M.S.; writing—review and editing, L.F.C. and O.A.R.
All authors have read and agreed to the published version of the manuscript.

Funding: We acknowledge the financial support by the Universidad de Buenos Aires (UBACYT-
20020190200305BA and UBACYT-20020220400162BA).

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are included within
the article. The processed data are available from the corresponding author upon request.

Acknowledgments: We would like to thank the Assistant Editor and the two anonymous reviewers
for their constructive criticism and comments, which greatly contributed to enhancing the quality of
the manuscript.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A

In this appendix, the results obtained from applying the methodology to the daily
discharge and deseasonalized discharge series are shown. The permutation entropy and
statistical complexity were calculated for τ = 1 and varying D from 3 to 7 (Figures A1–A4).

The permutation entropy and complexity were applied to the daily discharge and
deseasonalized discharge series for 3 < D < 7. In both cases, the permutation entropy
decreases while the parameter D increases, and the results are shown in Figures A1 and A2,
respectively. For the complexity measure, as observed in Figures A3 and A4, the behavior
is different. The complexity and the parameter D increase simultaneously, but the slope is
different among the time series studied. A possible explanation could be that the record
period for the different series is not the same.
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The same analysis was conducted for the shuffled series of daily discharge and the
deseasonalized discharge series. The results show that in both cases, the entropy approaches
1 and the complexity approaches 0, as shown in Figures A5 and A6 for daily discharge
and Figures A7 and A8 for deseasonalized discharge time series. These results indicate
that the sorting of the values has an impact on the behavior of the time series in terms of
entropy and complexity. These findings show that, for the studied discharge time series,
the sequential arrangement of values significantly influences the process structure and the
information obtained from it.
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