Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = Altibbi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 959 KiB  
Article
Enhancing the Classification of Imbalanced Arabic Medical Questions Using DeepSMOTE
by Bushra Al-Smadi, Bassam Hammo, Hossam Faris and Pedro A. Castillo
AI 2025, 6(4), 77; https://doi.org/10.3390/ai6040077 - 11 Apr 2025
Viewed by 1468
Abstract
The growing demand for telemedicine has highlighted the need for automated healthcare services, particularly in medical question classification. This study presents a deep learning model designed to address key challenges in telemedicine, including class imbalance and accurate routing of Arabic medical questions to [...] Read more.
The growing demand for telemedicine has highlighted the need for automated healthcare services, particularly in medical question classification. This study presents a deep learning model designed to address key challenges in telemedicine, including class imbalance and accurate routing of Arabic medical questions to the correct specialties. The model combines AraBERTv0.2-Twitter, fine-tuned for informal Arabic, with Bidirectional Long Short-Term Memory (BiLSTM) networks to capture deep semantic relationships in medical text. We used a labeled dataset of 5000 Arabic consultation records from Altibbi, covering five key medical specialties selected for their clinical relevance and frequency. The data underwent preprocessing to remove noise and normalize text. We employed stratified sampling to ensure representative distribution across the selected medical specialties. We evaluate multiple models using macro precision, macro recall, macro F1-score, weighted F1-score, and G-Mean. Our results demonstrate that DeepSMOTE combined with cross-entropy loss achieves the best performance. The findings offer statistically significant improvements and have practical implications for improving screening and patient routing in telemedicine platforms. Full article
(This article belongs to the Section Medical & Healthcare AI)
Show Figures

Figure 1

25 pages, 486 KiB  
Article
Optimizing Large Language Models for Arabic Healthcare Communication: A Focus on Patient-Centered NLP Applications
by Rasheed Mohammad, Omer S. Alkhnbashi and Mohammad Hammoudeh
Big Data Cogn. Comput. 2024, 8(11), 157; https://doi.org/10.3390/bdcc8110157 - 14 Nov 2024
Cited by 2 | Viewed by 3199
Abstract
Recent studies have highlighted the growing integration of Natural Language Processing (NLP) techniques and Large Language Models (LLMs) in healthcare. These technologies have shown promising outcomes across various healthcare tasks, especially in widely studied languages like English and Chinese. While NLP methods have [...] Read more.
Recent studies have highlighted the growing integration of Natural Language Processing (NLP) techniques and Large Language Models (LLMs) in healthcare. These technologies have shown promising outcomes across various healthcare tasks, especially in widely studied languages like English and Chinese. While NLP methods have been extensively researched, LLM applications in healthcare represent a developing area with significant potential. However, the successful implementation of LLMs in healthcare requires careful review and guidance from human experts to ensure accuracy and reliability. Despite their emerging value, research on NLP and LLM applications for Arabic remains limited particularly when compared to other languages. This gap is largely due to challenges like the lack of suitable training datasets, the diversity of Arabic dialects, and the language’s structural complexity. In this study, a panel of medical experts evaluated responses generated by LLMs, including ChatGPT, for Arabic healthcare inquiries, rating their accuracy between 85% and 90%. After fine tuning ChatGPT with data from the Altibbi platform, accuracy improved to a range of 87% to 92%. This study demonstrates the potential of LLMs in addressing Arabic healthcare queries especially in interpreting questions across dialects. It highlights the value of LLMs in enhancing healthcare communication within the Arabic-speaking world and points to a promising area for further research. This work establishes a foundation for optimizing NLP and LLM technologies to achieve greater linguistic and cultural adaptability in global healthcare settings. Full article
Show Figures

Figure 1

26 pages, 2009 KiB  
Article
Toward an Automatic Quality Assessment of Voice-Based Telemedicine Consultations: A Deep Learning Approach
by Maria Habib, Mohammad Faris, Raneem Qaddoura, Manal Alomari, Alaa Alomari and Hossam Faris
Sensors 2021, 21(9), 3279; https://doi.org/10.3390/s21093279 - 10 May 2021
Cited by 16 | Viewed by 4323
Abstract
Maintaining a high quality of conversation between doctors and patients is essential in telehealth services, where efficient and competent communication is important to promote patient health. Assessing the quality of medical conversations is often handled based on a human auditory-perceptual evaluation. Typically, trained [...] Read more.
Maintaining a high quality of conversation between doctors and patients is essential in telehealth services, where efficient and competent communication is important to promote patient health. Assessing the quality of medical conversations is often handled based on a human auditory-perceptual evaluation. Typically, trained experts are needed for such tasks, as they follow systematic evaluation criteria. However, the daily rapid increase of consultations makes the evaluation process inefficient and impractical. This paper investigates the automation of the quality assessment process of patient–doctor voice-based conversations in a telehealth service using a deep-learning-based classification model. For this, the data consist of audio recordings obtained from Altibbi. Altibbi is a digital health platform that provides telemedicine and telehealth services in the Middle East and North Africa (MENA). The objective is to assist Altibbi’s operations team in the evaluation of the provided consultations in an automated manner. The proposed model is developed using three sets of features: features extracted from the signal level, the transcript level, and the signal and transcript levels. At the signal level, various statistical and spectral information is calculated to characterize the spectral envelope of the speech recordings. At the transcript level, a pre-trained embedding model is utilized to encompass the semantic and contextual features of the textual information. Additionally, the hybrid of the signal and transcript levels is explored and analyzed. The designed classification model relies on stacked layers of deep neural networks and convolutional neural networks. Evaluation results show that the model achieved a higher level of precision when compared with the manual evaluation approach followed by Altibbi’s operations team. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

Back to TopTop